Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

Overview

TimeLens: Event-based Video Frame Interpolation

TimeLens

This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper TimeLens: Event-based Video Frame Interpolation by Stepan Tulyakov*, Daniel Gehrig*, Stamatios Georgoulis, Julius Erbach, Mathias Gehrig, Yuanyou Li, and Davide Scaramuzza.

For more information, visit our project page.

Citation

A pdf of the paper is available here. If you use this dataset, please cite this publication as follows:

@Article{Tulyakov21CVPR,
  author        = {Stepan Tulyakov and Daniel Gehrig and Stamatios Georgoulis and Julius Erbach and Mathias Gehrig and Yuanyou Li and
                  Davide Scaramuzza},
  title         = {{TimeLens}: Event-based Video Frame Interpolation},
  journal       = "IEEE Conference on Computer Vision and Pattern Recognition",
  year          = 2021,
}

Google Colab

A Google Colab notebook is now available here. You can upsample your own video and events from you gdrive.

Gallery

For more examples, visit our project page.

coke paprika pouring water_bomb_floor

Installation

Install the dependencies with

cuda_version=10.2
conda create -y -n timelens python=3.7
conda activate timelens
conda install -y pytorch torchvision cudatoolkit=$cuda_version -c pytorch
conda install -y -c conda-forge opencv scipy tqdm click

Test TimeLens

First start by cloning this repo into a new folder

mkdir ~/timelens/
cd ~/timelens
git clone https://github.com/uzh-rpg/rpg_timelens

Then download the checkpoint and data to the repo

cd rpg_timelens
wget http://rpg.ifi.uzh.ch/timelens/data/checkpoint.bin
wget http://rpg.ifi.uzh.ch/timelens/data/example_github.zip
unzip example_github.zip 
rm -rf example_github.zip

Running Timelens

To run timelens simply call

skip=0
insert=7
python -m timelens.run_timelens checkpoint.bin example/events example/images example/output $skip $insert

This will generate the output in example/output. The first four variables are the checkpoint file, image folder and event folder and output folder respectively. The variables skip and insert determine the number of skipped vs. inserted frames, i.e. to generate a video with an 8 higher framerate, 7 frames need to be inserted, and 0 skipped.

The resulting images can be converted to a video with

ffmpeg -i example/output/%06d.png timelens.mp4

the resulting video is timelens.mp4.

Dataset

hsergb

Download the dataset from our project page. The dataset structure is as follows

.
├── close
│   └── test
│       ├── baloon_popping
│       │   ├── events_aligned
│       │   └── images_corrected
│       ├── candle
│       │   ├── events_aligned
│       │   └── images_corrected
│       ...
│
└── far
    └── test
        ├── bridge_lake_01
        │   ├── events_aligned
        │   └── images_corrected
        ├── bridge_lake_03
        │   ├── events_aligned
        │   └── images_corrected
        ...

Each events_aligned folder contains events files with template filename %06d.npz, and images_corrected contains image files with template filename %06d.png. In events_aligned each event file with index n contains events between images with index n-1 and n, i.e. event file 000001.npz contains events between images 000000.png and 000001.png. Moreover, images_corrected also contains timestamp.txt where image timestamps are stored. Note that in some folders there are more image files than event files. However, the image stamps in timestamp.txt should match with the event files and the additional images can be ignored.

For a quick test download the dataset to a folder using the link sent by email.

wget download_link.zip -O /tmp/dataset.zip
unzip /tmp/dataset.zip -d hsergb/

And run the test

python test_loader.py --dataset_root hsergb/ \ 
                      --dataset_type close \ 
                      --sequence spinning_umbrella \ 
                      --sample_index 400

This should open a window visualizing aligned events with a single image.

Owner
Robotics and Perception Group
Robotics and Perception Group
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.

Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p

Seoyoung Oh 1 Jan 02, 2022
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
Pip-package for trajectory benchmarking from "Be your own Benchmark: No-Reference Trajectory Metric on Registered Point Clouds", ECMR'21

Map Metrics for Trajectory Quality Map metrics toolkit provides a set of metrics to quantitatively evaluate trajectory quality via estimating consiste

Mobile Robotics Lab. at Skoltech 31 Oct 28, 2022
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
Source code for the plant extraction workflow introduced in the paper “Agricultural Plant Cataloging and Establishment of a Data Framework from UAV-based Crop Images by Computer Vision”

Plant extraction workflow Source code for the plant extraction workflow introduced in the paper "Agricultural Plant Cataloging and Establishment of a

Maurice Günder 0 Apr 22, 2022
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022