AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

Overview

AutoTabular

Paper Conference Conference Conference

AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models tabular data.

autotabular

[Toc]

What's good in it?

  • It is using the RAPIDS as back-end support, gives you the ability to execute end-to-end data science and analytics pipelines entirely on GPUs.
  • It Supports many anomaly detection models: ,
  • It using meta learning to accelerate model selection and parameter tuning.
  • It is using many Deep Learning models for tabular data: Wide&Deep, DCN(Deep & Cross Network), FM, DeepFM, PNN ...
  • It is using many machine learning algorithms: Baseline, Linear, Random Forest, Extra Trees, LightGBM, Xgboost, CatBoost, and Nearest Neighbors.
  • It can compute Ensemble based on greedy algorithm from Caruana paper.
  • It can stack models to build level 2 ensemble (available in Compete mode or after setting stack_models parameter).
  • It can do features preprocessing, like: missing values imputation and converting categoricals. What is more, it can also handle target values preprocessing.
  • It can do advanced features engineering, like: Golden Features, Features Selection, Text and Time Transformations.
  • It can tune hyper-parameters with not-so-random-search algorithm (random-search over defined set of values) and hill climbing to fine-tune final models.

Installation

The sources for AutoTabular can be downloaded from the Github repo.

You can either clone the public repository:

# clone project
git clone https://apulis-gitlab.apulis.cn/apulis/AutoTabular/autotabular.git
# First, install dependencies
pip install -r requirements.txt

Once you have a copy of the source, you can install it with:

python setup.py install

Example

Next, navigate to any file and run it.

# module folder
cd example

# run module (example: mnist as your main contribution)
python binary_classifier_Titanic.py

Auto Feature generate & Selection

TODO

Deep Feature Synthesis

import featuretools as ft
import pandas as pd
from sklearn.datasets import load_iris

# Load data and put into dataframe
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['species'] = iris.target
df['species'] = df['species'].map({
    0: 'setosa',
    1: 'versicolor',
    2: 'virginica'
})
# Make an entityset and add the entity
es = ft.EntitySet()
es.add_dataframe(
    dataframe_name='data', dataframe=df, make_index=True, index='index')
# Run deep feature synthesis with transformation primitives
feature_matrix, feature_defs = ft.dfs(
    entityset=es,
    max_depth=3,
    target_dataframe_name='data',
    agg_primitives=['mode', 'mean', 'max', 'count'],
    trans_primitives=[
        'add_numeric', 'multiply_numeric', 'cum_min', 'cum_mean', 'cum_max'
    ],
    groupby_trans_primitives=['cum_sum'])

print(feature_defs)
print(feature_matrix.head())
print(feature_matrix.ww)

GBDT Feature Generate

from autofe.feature_engineering.gbdt_feature import CatboostFeatureTransformer, GBDTFeatureTransformer, LightGBMFeatureTransformer, XGBoostFeatureTransformer

titanic = pd.read_csv('autotabular/datasets/data/Titanic.csv')
# 'Embarked' is stored as letters, so fit a label encoder to the train set to use in the loop
embarked_encoder = LabelEncoder()
embarked_encoder.fit(titanic['Embarked'].fillna('Null'))
# Record anyone travelling alone
titanic['Alone'] = (titanic['SibSp'] == 0) & (titanic['Parch'] == 0)
# Transform 'Embarked'
titanic['Embarked'].fillna('Null', inplace=True)
titanic['Embarked'] = embarked_encoder.transform(titanic['Embarked'])
# Transform 'Sex'
titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 0
titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 1
titanic['Sex'] = titanic['Sex'].astype('int8')
# Drop features that seem unusable. Save passenger ids if test
titanic.drop(['Name', 'Ticket', 'Cabin'], axis=1, inplace=True)

trainMeans = titanic.groupby(['Pclass', 'Sex'])['Age'].mean()

def f(x):
    if not np.isnan(x['Age']):  # not NaN
        return x['Age']
    return trainMeans[x['Pclass'], x['Sex']]

titanic['Age'] = titanic.apply(f, axis=1)
rows = titanic.shape[0]
n_train = int(rows * 0.77)
train_data = titanic[:n_train, :]
test_data = titanic[n_train:, :]

X_train = titanic.drop(['Survived'], axis=1)
y_train = titanic['Survived']

clf = XGBoostFeatureTransformer(task='classification')
clf.fit(X_train, y_train)
result = clf.concate_transform(X_train)
print(result)

clf = LightGBMFeatureTransformer(task='classification')
clf.fit(X_train, y_train)
result = clf.concate_transform(X_train)
print(result)

clf = GBDTFeatureTransformer(task='classification')
clf.fit(X_train, y_train)
result = clf.concate_transform(X_train)
print(result)

clf = CatboostFeatureTransformer(task='classification')
clf.fit(X_train, y_train)
result = clf.concate_transform(X_train)
print(result)

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score

lr = LogisticRegression()
x_train_gb, x_test_gb, y_train_gb, y_test_gb = train_test_split(
    result, y_train)
x_train, x_test, y_train, y_test = train_test_split(X_train, y_train)

lr.fit(x_train, y_train)
score = roc_auc_score(y_test, lr.predict(x_test))
print('LR with GBDT apply data, train data shape : {0}  auc: {1}'.format(
    x_train.shape, score))

lr = LogisticRegression()
lr.fit(x_train_gb, y_train_gb)
score = roc_auc_score(y_test_gb, lr.predict(x_test_gb))
print('LR with GBDT apply data, train data shape : {0}  auc: {1}'.format(
    x_train_gb.shape, score))

Golden Feature Generate

from autofe import GoldenFeatureTransform

titanic = pd.read_csv('autotabular/datasets/data/Titanic.csv')
embarked_encoder = LabelEncoder()
embarked_encoder.fit(titanic['Embarked'].fillna('Null'))
# Record anyone travelling alone
titanic['Alone'] = (titanic['SibSp'] == 0) & (titanic['Parch'] == 0)
# Transform 'Embarked'
titanic['Embarked'].fillna('Null', inplace=True)
titanic['Embarked'] = embarked_encoder.transform(titanic['Embarked'])
# Transform 'Sex'
titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 0
titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 1
titanic['Sex'] = titanic['Sex'].astype('int8')
# Drop features that seem unusable. Save passenger ids if test
titanic.drop(['Name', 'Ticket', 'Cabin'], axis=1, inplace=True)

trainMeans = titanic.groupby(['Pclass', 'Sex'])['Age'].mean()

def f(x):
    if not np.isnan(x['Age']):  # not NaN
        return x['Age']
    return trainMeans[x['Pclass'], x['Sex']]

titanic['Age'] = titanic.apply(f, axis=1)

X_train = titanic.drop(['Survived'], axis=1)
y_train = titanic['Survived']
print(X_train)
gbdt_model = GoldenFeatureTransform(
    results_path='./', ml_task='BINARY_CLASSIFICATION')
gbdt_model.fit(X_train, y_train)
results = gbdt_model.transform(X_train)
print(results)

Neural Network Embeddings

# data url
"""https://www.kaggle.com/c/house-prices-advanced-regression-techniques."""
data_dir = '/media/robin/DATA/datatsets/structure_data/house_price/train.csv'
data = pd.read_csv(
    data_dir,
    usecols=[
        'SalePrice', 'MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea',
        'Street', 'YearBuilt', 'LotShape', '1stFlrSF', '2ndFlrSF'
    ]).dropna()

categorical_features = [
    'MSSubClass', 'MSZoning', 'Street', 'LotShape', 'YearBuilt'
]
output_feature = 'SalePrice'
label_encoders = {}
for cat_col in categorical_features:
    label_encoders[cat_col] = LabelEncoder()
    data[cat_col] = label_encoders[cat_col].fit_transform(data[cat_col])

dataset = TabularDataset(
    data=data, cat_cols=categorical_features, output_col=output_feature)

batchsize = 64
dataloader = DataLoader(dataset, batchsize, shuffle=True, num_workers=1)

cat_dims = [int(data[col].nunique()) for col in categorical_features]
emb_dims = [(x, min(50, (x + 1) // 2)) for x in cat_dims]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = FeedForwardNN(
    emb_dims,
    no_of_cont=4,
    lin_layer_sizes=[50, 100],
    output_size=1,
    emb_dropout=0.04,
    lin_layer_dropouts=[0.001, 0.01]).to(device)
print(model)
num_epochs = 100
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
for epoch in range(num_epochs):
    for y, cont_x, cat_x in dataloader:
        cat_x = cat_x.to(device)
        cont_x = cont_x.to(device)
        y = y.to(device)
        # Forward Pass
        preds = model(cont_x, cat_x)
        loss = criterion(preds, y)
        # Backward Pass and Optimization
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print('loss:', loss)

License

This library is licensed under the Apache 2.0 License.

Contributing to AutoTabular

We are actively accepting code contributions to the AutoTabular project. If you are interested in contributing to AutoTabular, please contact me.

Owner
wenqi
Learning is all you need!
wenqi
Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters

Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters. It also works with any regressor compatible with the scikit-learn API (pipelines, CatBoost, LightGBM

JoaquĆ­n Amat Rodrigo 297 Jan 09, 2023
Mixing up the Invariant Information clustering architecture, with self supervised concepts from SimCLR and MoCo approaches

Self Supervised clusterer Combined IIC, and Moco architectures, with some SimCLR notions, to get state of the art unsupervised clustering while retain

Bendidi Ihab 9 Feb 13, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learn

Vowpal Wabbit 8.1k Dec 30, 2022
This is the material used in my free Persian course: Machine Learning with Python

This is the material used in my free Persian course: Machine Learning with Python

Yara Mohamadi 4 Aug 07, 2022
dirty_cat is a Python module for machine-learning on dirty categorical variables.

dirty_cat dirty_cat is a Python module for machine-learning on dirty categorical variables.

637 Dec 29, 2022
Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Amplo 10 May 15, 2022
Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Thoughtworks 318 Jan 02, 2023
Scikit-Learn useful pre-defined Pipelines Hub

Scikit-Pipes Scikit-Learn useful pre-defined Pipelines Hub Usage: Install scikit-pipes It's advised to install sklearn-genetic using a virtual env, in

Rodrigo Arenas 1 Apr 26, 2022
A data preprocessing package for time series data. Design for machine learning and deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

Allen Chiang 152 Jan 07, 2023
ML Kaggle Titanic Problem using LogisticRegrission

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission here you will find the solution for the titanic problem on kaggle with comments and step by step c

Mahmoud Nasser Abdulhamed 3 Oct 23, 2022
A high performance and generic framework for distributed DNN training

BytePS BytePS is a high performance and general distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on eith

Bytedance Inc. 3.3k Dec 28, 2022
This handbook accompanies the course: Machine Learning with Hung-Yi Lee

This handbook accompanies the course: Machine Learning with Hung-Yi Lee

RenChu Wang 472 Dec 31, 2022
Forecasting prices using Facebook/Meta's Prophet model

CryptoForecasting using Machine and Deep learning (Part 1) CryptoForecasting using Machine Learning The main aspect of predicting the stock-related da

1 Nov 27, 2021
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
Machine Learning for RC Cars

Suiron Machine Learning for RC Cars Prediction visualization (green = actual, blue = prediction) Click the video below to see it in action! Dependenci

Kendrick Tan 706 Jan 02, 2023
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Solve automatic numerical differentiation problems in one or more variables.

numdifftools The numdifftools library is a suite of tools written in _Python to solve automatic numerical differentiation problems in one or more vari

Per A. Brodtkorb 181 Dec 16, 2022
Python based GBDT implementation

Py-boost: a research tool for exploring GBDTs Modern gradient boosting toolkits are very complex and are written in low-level programming languages. A

Sberbank AI Lab 20 Sep 21, 2022
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
Simplify stop motion animation with machine learning.

Simplify stop motion animation with machine learning.

Nick Bild 25 Sep 15, 2022