Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Overview

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models".

FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. See paper via this link.

Pretrained models

Download checkpoints from this link and this link. Put them under checkpoints\ema_diffusion_${dataset_name}_model\model.ckpt, where ${dataset_name} is cifar10, celeba64, lsun_bedroom, lsun_church, or lsun_cat.

Usage

General command: python generate.py -ema -name ${dataset_name} -approxdiff ${approximate_diffusion_process} -kappa ${kappa} -S ${FastDPM_length} -schedule ${noise_level_schedule} -n ${number_to_generate} -bs ${batchsize} -gpu ${gpu_index}

  • ${dataset_name}: cifar10, celeba64, lsun_bedroom, lsun_church, or lsun_cat
  • ${approximate_diffusion_process}: VAR or STEP
  • ${kappa}: a real value between 0 and 1
  • ${FastDPM_length}: an integer between 1 and 1000; 10, 20, 50, 100 used in paper.
  • ${noise_level_schedule}: linear or quadratic

CIFAR-10

Below are commands to generate CIFAR-10 images.

  • Standard DDPM generation: python generate.py -ema -name cifar10 -approxdiff STD -n 16 -bs 16
  • FastDPM generation (STEP + DDPM-rev): python generate.py -ema -name cifar10 -approxdiff STEP -kappa 1.0 -S 50 -schedule quadratic -n 16 -bs 16
  • FastDPM generation (STEP + DDIM-rev): python generate.py -ema -name cifar10 -approxdiff STEP -kappa 0.0 -S 50 -schedule quadratic -n 16 -bs 16
  • FastDPM generation (VAR + DDPM-rev): python generate.py -ema -name cifar10 -approxdiff VAR -kappa 1.0 -S 50 -schedule quadratic -n 16 -bs 16
  • FastDPM generation (VAR + DDIM-rev): python generate.py -ema -name cifar10 -approxdiff VAR -kappa 0.0 -S 50 -schedule quadratic -n 16 -bs 16

CelebA

Below are commands to generate CelebA images.

  • Standard DDPM generation: python generate.py -ema -name celeba64 -approxdiff STD -n 16 -bs 16
  • FastDPM generation (STEP + DDPM-rev): python generate.py -ema -name celeba64 -approxdiff STEP -kappa 1.0 -S 50 -schedule linear -n 16 -bs 16
  • FastDPM generation (STEP + DDIM-rev): python generate.py -ema -name celeba64 -approxdiff STEP -kappa 0.0 -S 50 -schedule linear -n 16 -bs 16
  • FastDPM generation (VAR + DDPM-rev): python generate.py -ema -name celeba64 -approxdiff VAR -kappa 1.0 -S 50 -schedule linear -n 16 -bs 16
  • FastDPM generation (VAR + DDIM-rev): python generate.py -ema -name celeba64 -approxdiff VAR -kappa 0.0 -S 50 -schedule linear -n 16 -bs 16

LSUN_bedroom

Below are commands to generate LSUN bedroom images.

  • Standard DDPM generation: python generate.py -ema -name lsun_bedroom -approxdiff STD -n 8 -bs 8
  • FastDPM generation (STEP + DDPM-rev): python generate.py -ema -name lsun_bedroom -approxdiff STEP -kappa 1.0 -S 50 -schedule linear -n 8 -bs 8
  • FastDPM generation (STEP + DDIM-rev): python generate.py -ema -name lsun_bedroom -approxdiff STEP -kappa 0.0 -S 50 -schedule linear -n 8 -bs 8
  • FastDPM generation (VAR + DDPM-rev): python generate.py -ema -name lsun_bedroom -approxdiff VAR -kappa 1.0 -S 50 -schedule linear -n 8 -bs 8
  • FastDPM generation (VAR + DDIM-rev): python generate.py -ema -name lsun_bedroom -approxdiff VAR -kappa 0.0 -S 50 -schedule linear -n 8 -bs 8

Note

To generate 50K samples, set -n 50000 and batchsize (-bs) divisible by 50K.

Compute FID

To compute FID of generated samples, first make sure there are 50K images, and then run

  • python FID.py -ema -name cifar10 -approxdiff STEP -kappa 1.0 -S 50 -schedule quadratic

Code References

Owner
Zhifeng Kong
Ph.D. student, UCSD
Zhifeng Kong
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022
Tool cek opsi checkpoint facebook!

tool apa ini? cek_opsi_facebook adalah sebuah tool yang mengecek opsi checkpoint akun facebook yang terkena checkpoint! tujuan dibuatnya tool ini? too

Muhammad Latif Harkat 2 Jul 17, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
Code for our NeurIPS 2021 paper: Sparsely Changing Latent States for Prediction and Planning in Partially Observable Domains

GateL0RD This is a lightweight PyTorch implementation of GateL0RD, our RNN presented in "Sparsely Changing Latent States for Prediction and Planning i

Autonomous Learning Group 16 Nov 03, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

shangbuhuan 52 Nov 25, 2022
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
Akshat Surolia 2 May 11, 2022
[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
Mmrotate - OpenMMLab Rotated Object Detection Benchmark

OpenMMLab website HOT OpenMMLab platform TRY IT OUT 📘 Documentation | 🛠️ Insta

OpenMMLab 1.2k Jan 04, 2023
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022