Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Overview

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models".

FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. See paper via this link.

Pretrained models

Download checkpoints from this link and this link. Put them under checkpoints\ema_diffusion_${dataset_name}_model\model.ckpt, where ${dataset_name} is cifar10, celeba64, lsun_bedroom, lsun_church, or lsun_cat.

Usage

General command: python generate.py -ema -name ${dataset_name} -approxdiff ${approximate_diffusion_process} -kappa ${kappa} -S ${FastDPM_length} -schedule ${noise_level_schedule} -n ${number_to_generate} -bs ${batchsize} -gpu ${gpu_index}

  • ${dataset_name}: cifar10, celeba64, lsun_bedroom, lsun_church, or lsun_cat
  • ${approximate_diffusion_process}: VAR or STEP
  • ${kappa}: a real value between 0 and 1
  • ${FastDPM_length}: an integer between 1 and 1000; 10, 20, 50, 100 used in paper.
  • ${noise_level_schedule}: linear or quadratic

CIFAR-10

Below are commands to generate CIFAR-10 images.

  • Standard DDPM generation: python generate.py -ema -name cifar10 -approxdiff STD -n 16 -bs 16
  • FastDPM generation (STEP + DDPM-rev): python generate.py -ema -name cifar10 -approxdiff STEP -kappa 1.0 -S 50 -schedule quadratic -n 16 -bs 16
  • FastDPM generation (STEP + DDIM-rev): python generate.py -ema -name cifar10 -approxdiff STEP -kappa 0.0 -S 50 -schedule quadratic -n 16 -bs 16
  • FastDPM generation (VAR + DDPM-rev): python generate.py -ema -name cifar10 -approxdiff VAR -kappa 1.0 -S 50 -schedule quadratic -n 16 -bs 16
  • FastDPM generation (VAR + DDIM-rev): python generate.py -ema -name cifar10 -approxdiff VAR -kappa 0.0 -S 50 -schedule quadratic -n 16 -bs 16

CelebA

Below are commands to generate CelebA images.

  • Standard DDPM generation: python generate.py -ema -name celeba64 -approxdiff STD -n 16 -bs 16
  • FastDPM generation (STEP + DDPM-rev): python generate.py -ema -name celeba64 -approxdiff STEP -kappa 1.0 -S 50 -schedule linear -n 16 -bs 16
  • FastDPM generation (STEP + DDIM-rev): python generate.py -ema -name celeba64 -approxdiff STEP -kappa 0.0 -S 50 -schedule linear -n 16 -bs 16
  • FastDPM generation (VAR + DDPM-rev): python generate.py -ema -name celeba64 -approxdiff VAR -kappa 1.0 -S 50 -schedule linear -n 16 -bs 16
  • FastDPM generation (VAR + DDIM-rev): python generate.py -ema -name celeba64 -approxdiff VAR -kappa 0.0 -S 50 -schedule linear -n 16 -bs 16

LSUN_bedroom

Below are commands to generate LSUN bedroom images.

  • Standard DDPM generation: python generate.py -ema -name lsun_bedroom -approxdiff STD -n 8 -bs 8
  • FastDPM generation (STEP + DDPM-rev): python generate.py -ema -name lsun_bedroom -approxdiff STEP -kappa 1.0 -S 50 -schedule linear -n 8 -bs 8
  • FastDPM generation (STEP + DDIM-rev): python generate.py -ema -name lsun_bedroom -approxdiff STEP -kappa 0.0 -S 50 -schedule linear -n 8 -bs 8
  • FastDPM generation (VAR + DDPM-rev): python generate.py -ema -name lsun_bedroom -approxdiff VAR -kappa 1.0 -S 50 -schedule linear -n 8 -bs 8
  • FastDPM generation (VAR + DDIM-rev): python generate.py -ema -name lsun_bedroom -approxdiff VAR -kappa 0.0 -S 50 -schedule linear -n 8 -bs 8

Note

To generate 50K samples, set -n 50000 and batchsize (-bs) divisible by 50K.

Compute FID

To compute FID of generated samples, first make sure there are 50K images, and then run

  • python FID.py -ema -name cifar10 -approxdiff STEP -kappa 1.0 -S 50 -schedule quadratic

Code References

Owner
Zhifeng Kong
Ph.D. student, UCSD
Zhifeng Kong
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
NALSM: Neuron-Astrocyte Liquid State Machine

NALSM: Neuron-Astrocyte Liquid State Machine This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that int

Computational Brain Lab 4 Nov 28, 2022
Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation

Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation This implementation is based on orobix implement

Juntang Zhuang 116 Sep 06, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
Chatbot in 200 lines of code using TensorLayer

Seq2Seq Chatbot This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code: Pr

TensorLayer Community 820 Dec 17, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Dominik Klein 189 Dec 21, 2022
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa

Jie Hu 182 Dec 19, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023