PyTorch Connectomics: segmentation toolbox for EM connectomics

Overview


Introduction

The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individual synapses. Recent advances in electronic microscopy (EM) have enabled the collection of a large number of image stacks at nanometer resolution, but the annotation requires expertise and is super time-consuming. Here we provide a deep learning framework powered by PyTorch for automatic and semi-automatic semantic and instance segmentation in connectomics, which is called PyTorch Connectomics (PyTC). This repository is mainly maintained by the Visual Computing Group (VCG) at Harvard University.

PyTorch Connectomics is currently under active development!

Key Features

  • Multi-task, Active and Semi-supervised Learning
  • Distributed and Mixed-precision Training
  • Scalability for Handling Large Datasets

If you want new features that are relatively easy to implement (e.g., loss functions, models), please open a feature requirement discussion in issues or implement by yourself and submit a pull request. For other features that requires substantial amount of design and coding, please contact the author directly.

Environment

The code is developed and tested under the following configurations.

  • Hardware: 1-8 Nvidia GPUs with at least 12G GPU memory (change SYSTEM.NUM_GPU accordingly based on the configuration of your machine)
  • Software: CentOS Linux 7.4 (Core), CUDA>=11.1, Python>=3.8, PyTorch>=1.9.0, YACS>=0.1.8

Installation

Create a new conda environment and install PyTorch:

conda create -n py3_torch python=3.8
source activate py3_torch
conda install pytorch torchvision cudatoolkit=11.1 -c pytorch -c nvidia

Please note that this package is mainly developed on the Harvard FASRC cluster. More information about GPU computing on the FASRC cluster can be found here.

Download and install the package:

git clone https://github.com/zudi-lin/pytorch_connectomics.git
cd pytorch_connectomics
pip install --upgrade pip
pip install --editable .

Since the package is under active development, the editable installation will allow any changes to the original package to reflect directly in the environment. For more information and frequently asked questions about installation, please check the installation guide.

Notes

Data Augmentation

We provide a data augmentation interface several different kinds of commonly used augmentation method for EM images. The interface is pure-python, and operate on and output only numpy arrays, so it can be easily incorporated into any kinds of python-based deep learning frameworks (e.g., TensorFlow). For more details about the design of the data augmentation module, please check the documentation.

YACS Configuration

We use the Yet Another Configuration System (YACS) library to manage the settings and hyperparameters in model training and inference. The configuration files for tutorial examples can be found here. All available configuration options can be found at connectomics/config/defaults.py. Please note that the default value of several options is None, which is only supported after YACS v0.1.8.

Segmentation Models

We provide several encoder-decoder architectures, which are customized 3D UNet and Feature Pyramid Network (FPN) models with various blocks and backbones. Those models can be applied for both semantic segmentation and bottom-up instance segmentation of 3D image stacks. Those models can also be constructed specifically for isotropic and anisotropic datasets. Please check the documentation for more details.

Acknowledgement

This project is built upon numerous previous projects. Especially, we'd like to thank the contributors of the following github repositories:

License

This project is licensed under the MIT License and the copyright belongs to all PyTorch Connectomics contributors - see the LICENSE file for details.

Citation

If you find PyTorch Connectomics (PyTC) useful in your research, please cite:

@misc{lin2019pytorchconnectomics,
  author =       {Zudi Lin and Donglai Wei},
  title =        {PyTorch Connectomics},
  howpublished = {\url{https://github.com/zudi-lin/pytorch_connectomics}},
  year =         {2019}
}
Owner
Zudi Lin
CS Ph.D. student at Harvard
Zudi Lin
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
Implicit Model Specialization through DAG-based Decentralized Federated Learning

Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp

Operating Systems and Middleware Group 5 Oct 16, 2022
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian

117 Jan 07, 2023
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 360 Dec 10, 2022
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022