Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

Related tags

Deep LearningConfGF
Overview

ConfGF


License: MIT

[PDF] | [Slides]

The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk)

Installation

Install via Conda (Recommended)

# Clone the environment
conda env create -f env.yml

# Activate the environment
conda activate confgf

# Install Library
git clone https://github.com/DeepGraphLearning/ConfGF.git
cd ConfGF
python setup.py install

Install Manually

# Create conda environment
conda create -n confgf python=3.7

# Activate the environment
conda activate confgf

# Install packages
conda install -y -c pytorch pytorch=1.7.0 torchvision torchaudio cudatoolkit=10.2
conda install -y -c rdkit rdkit==2020.03.2.0
conda install -y scikit-learn pandas decorator ipython networkx tqdm matplotlib
conda install -y -c conda-forge easydict
pip install pyyaml

# Install PyTorch Geometric
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.7.0+cu102.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.7.0+cu102.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.7.0+cu102.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.7.0+cu102.html
pip install torch-geometric==1.6.3

# Install Library
git clone https://github.com/DeepGraphLearning/ConfGF.git
cd ConfGF
python setup.py install

Dataset

Offical Dataset

The offical raw GEOM dataset is avaiable [here].

Preprocessed dataset

We provide the preprocessed datasets (GEOM, ISO17) in a [google drive folder]. For ISO17 dataset, we use the default split of [GraphDG].

Prepare your own GEOM dataset from scratch (optional)

Download the raw GEOM dataset and unpack it.

tar xvf ~/rdkit_folder.tar.gz -C ~/GEOM

Preprocess the raw GEOM dataset.

python script/process_GEOM_dataset.py --base_path GEOM --dataset_name qm9 --confmin 50 --confmax 500
python script/process_GEOM_dataset.py --base_path GEOM --dataset_name drugs --confmin 50 --confmax 100

The final folder structure will look like this:

GEOM
|___rdkit_folder  # raw dataset
|   |___qm9 # raw qm9 dataset
|   |___drugs # raw drugs dataset
|   |___summary_drugs.json
|   |___summary_qm9.json
|   
|___qm9_processed
|   |___train_data_40k.pkl
|   |___val_data_5k.pkl
|   |___test_data_200.pkl
|   
|___drugs_processed
|   |___train_data_39k.pkl
|   |___val_data_5k.pkl
|   |___test_data_200.pkl
|
iso17_processed
|___iso17_split-0_train_processed.pkl
|___iso17_split-0_test_processed.pkl
|
...

Training

All hyper-parameters and training details are provided in config files (./config/*.yml), and free feel to tune these parameters.

You can train the model with the following commands:

python -u script/train.py --config_path ./config/qm9_default.yml
python -u script/train.py --config_path ./config/drugs_default.yml
python -u script/train.py --config_path ./config/iso17_default.yml

The checkpoint of the models will be saved into a directory specified in config files.

Generation

We provide the checkpoints of three trained models, i.e., qm9_default, drugs_default and iso17_default in a [google drive folder].

You can generate conformations of a molecule by feeding its SMILES into the model:

python -u script/gen.py --config_path ./config/qm9_default.yml --generator ConfGF --smiles c1ccccc1
python -u script/gen.py --config_path ./config/qm9_default.yml --generator ConfGFDist --smiles c1ccccc1

Here we use the models trained on GEOM-QM9 to generate conformations for the benzene. The argument --generator indicates the type of the generator, i.e., ConfGF vs. ConfGFDist. See the ablation study (Table 5) in the original paper for more details.

You can also generate conformations for an entire test set.

python -u script/gen.py --config_path ./config/qm9_default.yml --generator ConfGF \
                        --start 0 --end 200 \

python -u script/gen.py --config_path ./config/qm9_default.yml --generator ConfGFDist \
                        --start 0 --end 200 \

python -u script/gen.py --config_path ./config/drugs_default.yml --generator ConfGF \
                        --start 0 --end 200 \

python -u script/gen.py --config_path ./config/drugs_default.yml --generator ConfGFDist \
                        --start 0 --end 200 \

Here start and end indicate the range of the test set that we want to use. All hyper-parameters related to generation can be set in config files.

Conformations of some drug-like molecules generated by ConfGF are provided below.

Get Results

The results of all benchmark tasks can be calculated based on generated conformations.

We report the results of each task in the following tables. Results of ConfGF and ConfGFDist are re-evaluated based on the current code base, which successfully reproduce the results reported in the original paper. Results of other models are taken directly from the original paper.

Task 1. Conformation Generation

The COV and MAT scores on the GEOM datasets can be calculated using the following commands:

python -u script/get_task1_results.py --input dir_of_QM9_samples --core 10 --threshold 0.5  

python -u script/get_task1_results.py --input dir_of_Drugs_samples --core 10 --threshold 1.25  

Table: COV and MAT scores on GEOM-QM9

QM9 COV-Mean (%) COV-Median (%) MAT-Mean (\AA) MAT-Median (\AA)
ConfGF 91.06 95.76 0.2649 0.2668
ConfGFDist 85.37 88.59 0.3435 0.3548
CGCF 78.05 82.48 0.4219 0.3900
GraphDG 73.33 84.21 0.4245 0.3973
CVGAE 0.09 0.00 1.6713 1.6088
RDKit 83.26 90.78 0.3447 0.2935

Table: COV and MAT scores on GEOM-Drugs

Drugs COV-Mean (%) COV-Median (%) MAT-Mean (\AA) MAT-Median (\AA)
ConfGF 62.54 71.32 1.1637 1.1617
ConfGFDist 49.96 48.12 1.2845 1.2827
CGCF 53.96 57.06 1.2487 1.2247
GraphDG 8.27 0.00 1.9722 1.9845
CVGAE 0.00 0.00 3.0702 2.9937
RDKit 60.91 65.70 1.2026 1.1252

Task 2. Distributions Over Distances

The MMD metrics on the ISO17 dataset can be calculated using the following commands:

python -u script/get_task2_results.py --input dir_of_ISO17_samples

Table: Distributions over distances

Method Single-Mean Single-Median Pair-Mean Pair-Median All-Mean All-Median
ConfGF 0.3430 0.2473 0.4195 0.3081 0.5432 0.3868
ConfGFDist 0.3348 0.2011 0.4080 0.2658 0.5821 0.3974
CGCF 0.4490 0.1786 0.5509 0.2734 0.8703 0.4447
GraphDG 0.7645 0.2346 0.8920 0.3287 1.1949 0.5485
CVGAE 4.1789 4.1762 4.9184 5.1856 5.9747 5.9928
RDKit 3.4513 3.1602 3.8452 3.6287 4.0866 3.7519

Visualizing molecules with PyMol

Start Setup

  1. pymol -R
  2. Display - Background - White
  3. Display - Color Space - CMYK
  4. Display - Quality - Maximal Quality
  5. Display Grid
    1. by object: use set grid_slot, int, mol_name to put the molecule into the corresponding slot
    2. by state: align all conformations in a single slot
    3. by object-state: align all conformations and put them in separate slots. (grid_slot dont work!)
  6. Setting - Line and Sticks - Ball and Stick on - Ball and Stick ratio: 1.5
  7. Setting - Line and Sticks - Stick radius: 0.2 - Stick Hydrogen Scale: 1.0

Show Molecule

  1. To show molecules

    1. hide everything
    2. show sticks
  2. To align molecules: align name1, name2

  3. Convert RDKit mol to Pymol

    from rdkit.Chem import PyMol
    v= PyMol.MolViewer()
    rdmol = Chem.MolFromSmiles('C')
    v.ShowMol(rdmol, name='mol')
    v.SaveFile('mol.pkl')

Make the trajectory for Langevin dynamics

  1. load a sequence of pymol objects named traj*.pkl into the PyMol, where traji.pkl is the i-th conformation in the trajectory.
  2. Join states: join_states mol, traj*, 0
  3. Delete useless object: delete traj*
  4. Movie - Program - State Loop - Full Speed
  5. Export the movie to a sequence of PNG files: File - Export Movie As - PNG Images
  6. Use photoshop to convert the PNG sequence to a GIF with the transparent background.

Citation

Please consider citing the following paper if you find our codes helpful. Thank you!

@inproceedings{shi*2021confgf,
title={Learning Gradient Fields for Molecular Conformation Generation},
author={Shi, Chence and Luo, Shitong and Xu, Minkai and Tang, Jian},
booktitle={International Conference on Machine Learning},
year={2021}
}

Contact

Chence Shi ([email protected])

Owner
MilaGraph
Research group led by Prof. Jian Tang at Mila-Quebec AI Institute (https://mila.quebec/) focusing on graph representation learning and graph neural networks.
MilaGraph
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
OpenVisionAPI server

🚀 Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst

Open Vision API 93 Nov 24, 2022
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales

Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam

39 Jul 21, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 05, 2023
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

25.7k Jan 09, 2023
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
Fast, Attemptable Route Planner for Navigation in Known and Unknown Environments

FAR Planner uses a dynamically updated visibility graph for fast replanning. The planner models the environment with polygons and builds a global visi

Fan Yang 346 Dec 30, 2022
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
This code implements constituency parse tree aggregation

README This code implements constituency parse tree aggregation. Folder details code: This folder contains the code that implements constituency parse

Adithya Kulkarni 0 Oct 11, 2021
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022