Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Related tags

Deep Learningvis2mesh
Overview

Vis2Mesh

This is the offical repository of the paper:

Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility

https://arxiv.org/abs/2108.08378

@misc{song2021vis2mesh,
      title={Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility}, 
      author={Shuang Song and Zhaopeng Cui and Rongjun Qin},
      year={2021},
      eprint={2108.08378},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Updates
  • 2021/9/6: Intialize all in one project. Only this version only supports inferencing with our pre-trained weights. We will release Dockerfile to relief deploy efforts.
TODO
  • Ground truth generation and network training.
  • Evaluation scripts

Build With Docker (Recommended)

Install nvidia-docker2
# Add the package repositories
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker
Build docker image

docker build . -t vis2mesh

Build on Ubuntu

Please create a conda environment with pytorch and check out our setup script:

./setup_tools.sh

Usage

Get pretrained weights and examples
pip install gdown
./checkpoints/get_pretrained.sh
./example/get_example.sh
Run example

The main command for surface reconstruction, the result will be copied as $(CLOUDFILE)_vis2mesh.ply.

python inference.py example/example1.ply --cam cam0

We suggested to use docker, either in interactive mode or single shot mode.

xhost +
name=vis2mesh
# Run in interactive mode
docker run -it \
--mount type=bind,source="$PWD/checkpoints",target=/workspace/checkpoints \
--mount type=bind,source="$PWD/example",target=/workspace/example \
--privileged \
--net=host \
-e NVIDIA_DRIVER_CAPABILITIES=all \
-e DISPLAY=unix$DISPLAY \
-v $XAUTH:/root/.Xauthority \
-v /tmp/.X11-unix:/tmp/.X11-unix:rw \
--device=/dev/dri \
--gpus all $name

cd /workspace
python inference.py example/example1.ply --cam cam0

# Run with single shot call
docker run \
--mount type=bind,source="$PWD/checkpoints",target=/workspace/checkpoints \
--mount type=bind,source="$PWD/example",target=/workspace/example \
--privileged \
--net=host \
-e NVIDIA_DRIVER_CAPABILITIES=all \
-e DISPLAY=unix$DISPLAY \
-v $XAUTH:/root/.Xauthority \
-v /tmp/.X11-unix:/tmp/.X11-unix:rw \
--device=/dev/dri \
--gpus all $name \
/workspace/inference.py example/example1.ply --cam cam0
Run with Customize Views

python inference.py example/example1.ply Run the command without --cam flag, you can add virtual views interactively with the following GUI. Your views will be recorded in example/example1.ply_WORK/cam*.json.

Main View

Navigate in 3D viewer and click key [Space] to record current view. Click key [Q] to close the window and continue meshing process.

Record Virtual Views

Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)

TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c

Nguyen Mau Dung 438 Dec 29, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

5 Dec 10, 2022
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
Public repository containing materials used for Feed Forward (FF) Neural Networks article.

Art041_NN_Feed_Forward Public repository containing materials used for Feed Forward (FF) Neural Networks article. -- Illustration of a very simple Fee

SolClover 2 Dec 29, 2021
Code for "MetaMorph: Learning Universal Controllers with Transformers", Gupta et al, ICLR 2022

MetaMorph: Learning Universal Controllers with Transformers This is the code for the paper MetaMorph: Learning Universal Controllers with Transformers

Agrim Gupta 50 Jan 03, 2023
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
Pydantic models for pywttr and aiopywttr.

Pydantic models for pywttr and aiopywttr.

Almaz 2 Dec 08, 2022
An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

LingXY 4 Jun 20, 2022
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022