A PyTorch implementation of the continual learning experiments with deep neural networks

Overview

Brain-Inspired Replay

A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper:

This paper proposes a new, brain-inspired version of generative replay that can scale to continual learning problems with natural images as inputs. This is demonstrated with the Split CIFAR-100 protocol, both for task-incremental learning and for class-incremental learning.

Installation & requirements

The current version of the code has been tested with Python 3.5.2 on several Linux operating systems with the following versions of PyTorch and Torchvision:

  • pytorch 1.1.0
  • torchvision 0.2.2

The versions that were used for other Python-packages are listed in requirements.txt.

To use the code, download the repository and change into it:

git clone https://github.com/GMvandeVen/brain-inspired-replay.git
cd brain-inspired-replay

(If downloading the zip-file, extract the files and change into the extracted folder.)

Assuming Python and pip are set up, the Python-packages used by this code can be installed using:

pip install -r requirements.txt

However, you might want to install pytorch and torchvision in a slightly different way to ensure compatability with your version of CUDA (see https://pytorch.org/).

Finally, the code in this repository itself does not need to be installed, but a number of scripts should be made executable:

chmod +x main_*.py compare_*.py create_figures.sh

Demos

Demo 1: Brain-inspired replay on split MNIST

./main_cl.py --experiment=splitMNIST --scenario=class --replay=generative --brain-inspired --pdf

This runs a single continual learning experiment: brain-inspired replay on the class-incremental learning scenario of split MNIST. Information about the data, the model, the training progress and the produced outputs (e.g., a pdf with results) is printed to the screen. Expected run-time on a standard laptop is ~12 minutes, with a GPU it should take ~4 minutes.

Demo 2: Comparison of continual learning methods

./compare_MNIST.py --scenario=class

This runs a series of continual learning experiments to compare the performance of various methods. Information about the different experiments, their progress and the produced outputs (e.g., a summary pdf) is printed to the screen. Expected run-time on a standard laptop is ~50 minutes, with a GPU it should take ~18 minutes.

These two demos can also be run with on-the-fly plots using the flag --visdom. For this visdom must be activated first, see instructions below.

Running comparisons from the paper

The script create_figures.sh provides step-by-step instructions for re-running the experiments and re-creating the figures reported in the paper.

Although it is possible to run this script as it is, it will take very long and it is probably sensible to parallellize the experiments.

Running custom experiments

Using main_cl.py, it is possible to run custom individual experiments. The main options for this script are:

  • --experiment: which task protocol? (splitMNIST|permMNIST|CIFAR100)
  • --scenario: according to which scenario? (task|domain|class)
  • --tasks: how many tasks?

To run specific methods, use the following:

  • Context-dependent-Gating (XdG): ./main_cl.py --xdg --xdg-prop=0.8
  • Elastic Weight Consolidation (EWC): ./main_cl.py --ewc --lambda=5000
  • Online EWC: ./main_cl.py --ewc --online --lambda=5000 --gamma=1
  • Synaptic Intelligenc (SI): ./main_cl.py --si --c=0.1
  • Learning without Forgetting (LwF): ./main_cl.py --replay=current --distill
  • Generative Replay (GR): ./main_cl.py --replay=generative
  • Brain-Inspired Replay (BI-R): ./main_cl.py --replay=generative --brain-inspired

For information on further options: ./main_cl.py -h.

PyTorch-implementations for several methods relying on stored data (Experience Replay, iCaRL and A-GEM), as well as for additional metrics (FWT, BWT, forgetting, intransigence), can be found here: https://github.com/GMvandeVen/continual-learning.

On-the-fly plots during training

With this code it is possible to track progress during training with on-the-fly plots. This feature requires visdom. Before running the experiments, the visdom server should be started from the command line:

python -m visdom.server

The visdom server is now alive and can be accessed at http://localhost:8097 in your browser (the plots will appear there). The flag --visdom should then be added when calling ./main_cl.py to run the experiments with on-the-fly plots.

For more information on visdom see https://github.com/facebookresearch/visdom.

Citation

Please consider citing our paper if you use this code in your research:

@article{vandeven2020brain,
  title={Brain-inspired replay for continual learning with artificial neural networks},
  author={van de Ven, Gido M and Siegelmann, Hava T and Tolias, Andreas S},
  journal={Nature Communications},
  volume={11},
  pages={4069},
  year={2020}
}

Acknowledgments

The research project from which this code originated has been supported by an IBRO-ISN Research Fellowship, by the Lifelong Learning Machines (L2M) program of the Defence Advanced Research Projects Agency (DARPA) via contract number HR0011-18-2-0025 and by the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior/Interior Business Center (DoI/IBC) contract number D16PC00003. Disclaimer: views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of DARPA, IARPA, DoI/IBC, or the U.S. Government.

Owner
Working at the intersection of Machine Learning, Computational Neuroscience and Cognitive Science.
Code and data for "Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning" (EMNLP 2021).

GD-VCR Code for Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning (EMNLP 2021). Research Questions and Aims: How well can a model perform o

Da Yin 24 Oct 13, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
Wordle Env: A Daily Word Environment for Reinforcement Learning

Wordle Env: A Daily Word Environment for Reinforcement Learning Setup Steps: git pull [email&#

2 Mar 28, 2022
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
Tello Drone Trajectory Tracking

With this library you can track the trajectory of your tello drone or swarm of drones in real time.

Kamran Asgarov 2 Oct 12, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022