A public available dataset for road boundary detection in aerial images

Overview

Topo-boundary

This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images for Autonomous Driving.

Project page.

Topo-boundary is a publicly available benchmark dataset for topological road-boundary detection in aerial images. With an aerial image as the input, the evaluated method should predict the topological structure of road boundaries in the form of a graph.

This dataset is based on NYC Planimetric Database. Topo-boundary consists of 25,297 4-channel aerial images, and each aerial image has eight labels for different deep-learning tasks. More details about the dataset structure can be found in our paper. Follow the steps in the ./dataset to prepare the dataset.

We also provide the implementation code (including training and inference) based on PyTorch of 9 methods. Go to the Implementation section for details.

Update

  • May/22/2021 Topo_boundary is released. More time is needed to prepare ConvBoundary, DAGMapper and Enhanced-iCurb, thus currently these models are not open-sourced.

Platform information

Hardware info

GPU: one RTX3090 and one GTX1080Ti
CPU: i7-8700K
RAM: 32G
SSD: 256G + 1T

Software info

Ubuntu 18.04
CUDA 11.2
Docker 20.10.1

Make sure you have Docker installed.

File structure

Topo-Boundary
|
├── dataset
|   ├── data_split.json
|   ├── config_dir.yml
|   ├── get_data.bash
|   ├── get_checkpoints.bash
│   ├── cropped_tiff
│   ├── labels
|   ├── pretrain_checkpoints
│   └── scripts
|   
├── docker 
|
├── graph_based_baselines
|   ├── ConvBoundary
|   ├── DAGMApper
|   ├── Enhanced-iCurb
|   ├── iCurb
|   ├── RoadTracer
|   └── VecRoad 
|
├── segmentation_based_baselines
|   ├── DeepRoadMapper
|   ├── OrientationRefine
|   └── naive_baseline
|

Environment and Docker

Docker is used to set up the environment. If you are not familiar with Docker, refer to install Docker and Docker beginner tutorial for more information.

To build the docker image, run:

# go to the directory
cd ./docker
# optional
chmod +x ./build_image.sh
# build the docker image
./build_image.sh

Data and pretrain checkpoints preparation

Follow the steps in ./dataset to prepare the dataset and checkpoints trained by us.

Implementations

We provide the implementation code of 9 methods, including 3 segmentation-based baseline models, 5 graph-based baseline models, and an improved method based on our previous work iCurb. All methods are implemented with PyTorch by ourselves.

Note that the evaluation results of baselines may change after some modifications being made.

Evaluation metrics

We evaluate our implementations by 3 relaxed-pixel-level metrics, the self-defined Entropy Connectivity Metric (ECM), naive connectivity metric (proposed in ConvBoundary) and Average Path Length Similarity (APLS). For more details, refer to the supplementary document.

Related topics

Other research topics about line-shaped object detection could be inspiring to our task. Line-shaped object indicts target objects that have long but thin shapes, and the topology correctness of them also matters a lot. They usually have an irregular shape. E.g., road-network detection, road-lane detection, road-curb detection, line-segment detection, etc. The method to detect one line-shaped object could be adapted to another category without much modification.

To do

  • Acceleration
  • Fix bugs

Contact

For any questions, please send email to zxubg at connect dot ust dot hk.

Citation

@article{xu2021topo,
  title={Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images for Autonomous Driving},
  author={Xu, Zhenhua and Sun, Yuxiang and Liu, Ming},
  journal={arXiv preprint arXiv:2103.17119},
  year={2021}
}

@article{xu2021icurb,
  title={iCurb: Imitation Learning-Based Detection of Road Curbs Using Aerial Images for Autonomous Driving},
  author={Xu, Zhenhua and Sun, Yuxiang and Liu, Ming},
  journal={IEEE Robotics and Automation Letters},
  volume={6},
  number={2},
  pages={1097--1104},
  year={2021},
  publisher={IEEE}
}
Owner
Zhenhua Xu
HKUST Ph.D. Candidate
Zhenhua Xu
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 1.5k Dec 29, 2022
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer is a transformer library for primarily NLP and multimodal research at Google.

Google 116 Jan 05, 2023
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

50 Nov 26, 2022
A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

ICT.MIRACLE lab 75 Dec 26, 2022
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.

MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme

Cong Shen Research Group 0 Oct 26, 2021
SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning

SPCL SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning Update on 2021/11/25: ArXiv Ver

Binhui Xie (谢斌辉) 11 Oct 29, 2022