A public available dataset for road boundary detection in aerial images

Overview

Topo-boundary

This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images for Autonomous Driving.

Project page.

Topo-boundary is a publicly available benchmark dataset for topological road-boundary detection in aerial images. With an aerial image as the input, the evaluated method should predict the topological structure of road boundaries in the form of a graph.

This dataset is based on NYC Planimetric Database. Topo-boundary consists of 25,297 4-channel aerial images, and each aerial image has eight labels for different deep-learning tasks. More details about the dataset structure can be found in our paper. Follow the steps in the ./dataset to prepare the dataset.

We also provide the implementation code (including training and inference) based on PyTorch of 9 methods. Go to the Implementation section for details.

Update

  • May/22/2021 Topo_boundary is released. More time is needed to prepare ConvBoundary, DAGMapper and Enhanced-iCurb, thus currently these models are not open-sourced.

Platform information

Hardware info

GPU: one RTX3090 and one GTX1080Ti
CPU: i7-8700K
RAM: 32G
SSD: 256G + 1T

Software info

Ubuntu 18.04
CUDA 11.2
Docker 20.10.1

Make sure you have Docker installed.

File structure

Topo-Boundary
|
├── dataset
|   ├── data_split.json
|   ├── config_dir.yml
|   ├── get_data.bash
|   ├── get_checkpoints.bash
│   ├── cropped_tiff
│   ├── labels
|   ├── pretrain_checkpoints
│   └── scripts
|   
├── docker 
|
├── graph_based_baselines
|   ├── ConvBoundary
|   ├── DAGMApper
|   ├── Enhanced-iCurb
|   ├── iCurb
|   ├── RoadTracer
|   └── VecRoad 
|
├── segmentation_based_baselines
|   ├── DeepRoadMapper
|   ├── OrientationRefine
|   └── naive_baseline
|

Environment and Docker

Docker is used to set up the environment. If you are not familiar with Docker, refer to install Docker and Docker beginner tutorial for more information.

To build the docker image, run:

# go to the directory
cd ./docker
# optional
chmod +x ./build_image.sh
# build the docker image
./build_image.sh

Data and pretrain checkpoints preparation

Follow the steps in ./dataset to prepare the dataset and checkpoints trained by us.

Implementations

We provide the implementation code of 9 methods, including 3 segmentation-based baseline models, 5 graph-based baseline models, and an improved method based on our previous work iCurb. All methods are implemented with PyTorch by ourselves.

Note that the evaluation results of baselines may change after some modifications being made.

Evaluation metrics

We evaluate our implementations by 3 relaxed-pixel-level metrics, the self-defined Entropy Connectivity Metric (ECM), naive connectivity metric (proposed in ConvBoundary) and Average Path Length Similarity (APLS). For more details, refer to the supplementary document.

Related topics

Other research topics about line-shaped object detection could be inspiring to our task. Line-shaped object indicts target objects that have long but thin shapes, and the topology correctness of them also matters a lot. They usually have an irregular shape. E.g., road-network detection, road-lane detection, road-curb detection, line-segment detection, etc. The method to detect one line-shaped object could be adapted to another category without much modification.

To do

  • Acceleration
  • Fix bugs

Contact

For any questions, please send email to zxubg at connect dot ust dot hk.

Citation

@article{xu2021topo,
  title={Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images for Autonomous Driving},
  author={Xu, Zhenhua and Sun, Yuxiang and Liu, Ming},
  journal={arXiv preprint arXiv:2103.17119},
  year={2021}
}

@article{xu2021icurb,
  title={iCurb: Imitation Learning-Based Detection of Road Curbs Using Aerial Images for Autonomous Driving},
  author={Xu, Zhenhua and Sun, Yuxiang and Liu, Ming},
  journal={IEEE Robotics and Automation Letters},
  volume={6},
  number={2},
  pages={1097--1104},
  year={2021},
  publisher={IEEE}
}
Owner
Zhenhua Xu
HKUST Ph.D. Candidate
Zhenhua Xu
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
An Straight Dilated Network with Wavelet for image Deblurring

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical) 1. Introduction This repo is not only used for our paper(

FlyEgle 41 Jan 04, 2023
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
Exploiting Robust Unsupervised Video Person Re-identification

Exploiting Robust Unsupervised Video Person Re-identification Implementation of the proposed uPMnet. For the preprint, please refer to [Arxiv]. Gettin

1 Apr 09, 2022
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022