A public available dataset for road boundary detection in aerial images

Overview

Topo-boundary

This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images for Autonomous Driving.

Project page.

Topo-boundary is a publicly available benchmark dataset for topological road-boundary detection in aerial images. With an aerial image as the input, the evaluated method should predict the topological structure of road boundaries in the form of a graph.

This dataset is based on NYC Planimetric Database. Topo-boundary consists of 25,297 4-channel aerial images, and each aerial image has eight labels for different deep-learning tasks. More details about the dataset structure can be found in our paper. Follow the steps in the ./dataset to prepare the dataset.

We also provide the implementation code (including training and inference) based on PyTorch of 9 methods. Go to the Implementation section for details.

Update

  • May/22/2021 Topo_boundary is released. More time is needed to prepare ConvBoundary, DAGMapper and Enhanced-iCurb, thus currently these models are not open-sourced.

Platform information

Hardware info

GPU: one RTX3090 and one GTX1080Ti
CPU: i7-8700K
RAM: 32G
SSD: 256G + 1T

Software info

Ubuntu 18.04
CUDA 11.2
Docker 20.10.1

Make sure you have Docker installed.

File structure

Topo-Boundary
|
├── dataset
|   ├── data_split.json
|   ├── config_dir.yml
|   ├── get_data.bash
|   ├── get_checkpoints.bash
│   ├── cropped_tiff
│   ├── labels
|   ├── pretrain_checkpoints
│   └── scripts
|   
├── docker 
|
├── graph_based_baselines
|   ├── ConvBoundary
|   ├── DAGMApper
|   ├── Enhanced-iCurb
|   ├── iCurb
|   ├── RoadTracer
|   └── VecRoad 
|
├── segmentation_based_baselines
|   ├── DeepRoadMapper
|   ├── OrientationRefine
|   └── naive_baseline
|

Environment and Docker

Docker is used to set up the environment. If you are not familiar with Docker, refer to install Docker and Docker beginner tutorial for more information.

To build the docker image, run:

# go to the directory
cd ./docker
# optional
chmod +x ./build_image.sh
# build the docker image
./build_image.sh

Data and pretrain checkpoints preparation

Follow the steps in ./dataset to prepare the dataset and checkpoints trained by us.

Implementations

We provide the implementation code of 9 methods, including 3 segmentation-based baseline models, 5 graph-based baseline models, and an improved method based on our previous work iCurb. All methods are implemented with PyTorch by ourselves.

Note that the evaluation results of baselines may change after some modifications being made.

Evaluation metrics

We evaluate our implementations by 3 relaxed-pixel-level metrics, the self-defined Entropy Connectivity Metric (ECM), naive connectivity metric (proposed in ConvBoundary) and Average Path Length Similarity (APLS). For more details, refer to the supplementary document.

Related topics

Other research topics about line-shaped object detection could be inspiring to our task. Line-shaped object indicts target objects that have long but thin shapes, and the topology correctness of them also matters a lot. They usually have an irregular shape. E.g., road-network detection, road-lane detection, road-curb detection, line-segment detection, etc. The method to detect one line-shaped object could be adapted to another category without much modification.

To do

  • Acceleration
  • Fix bugs

Contact

For any questions, please send email to zxubg at connect dot ust dot hk.

Citation

@article{xu2021topo,
  title={Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images for Autonomous Driving},
  author={Xu, Zhenhua and Sun, Yuxiang and Liu, Ming},
  journal={arXiv preprint arXiv:2103.17119},
  year={2021}
}

@article{xu2021icurb,
  title={iCurb: Imitation Learning-Based Detection of Road Curbs Using Aerial Images for Autonomous Driving},
  author={Xu, Zhenhua and Sun, Yuxiang and Liu, Ming},
  journal={IEEE Robotics and Automation Letters},
  volume={6},
  number={2},
  pages={1097--1104},
  year={2021},
  publisher={IEEE}
}
Owner
Zhenhua Xu
HKUST Ph.D. Candidate
Zhenhua Xu
Anomaly Localization in Model Gradients Under Backdoor Attacks Against Federated Learning

Federated_Learning This repo provides a federated learning framework that allows to carry out backdoor attacks under varying conditions. This is a ker

Arçelik ARGE Açık Kaynak Yazılım Organizasyonu 0 Nov 30, 2021
IDA file loader for UF2, created for the DEFCON 29 hardware badge

UF2 Loader for IDA The DEFCON 29 badge uses the UF2 bootloader, which conveniently allows you to dump and flash the firmware over USB as a mass storag

Kevin Colley 6 Feb 08, 2022
Artstation-Artistic-face-HQ Dataset (AAHQ)

Artstation-Artistic-face-HQ Dataset (AAHQ) Artstation-Artistic-face-HQ (AAHQ) is a high-quality image dataset of artistic-face images. It is proposed

onion 105 Dec 16, 2022
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
Continual Learning of Long Topic Sequences in Neural Information Retrieval

ContinualPassageRanking Repository for the paper "Continual Learning of Long Topic Sequences in Neural Information Retrieval". In this repository you

0 Apr 12, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021.

SG2HOI This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021. Installation Pytorch 1.7

HT 10 Dec 20, 2022
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
LWCC: A LightWeight Crowd Counting library for Python that includes several pretrained state-of-the-art models.

LWCC: A LightWeight Crowd Counting library for Python LWCC is a lightweight crowd counting framework for Python. It wraps four state-of-the-art models

Matija Teršek 39 Dec 28, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
Generalized hybrid model for mode-locked laser diodes with an extended passive cavity

GenHybridMLLmodel Generalized hybrid model for mode-locked laser diodes with an extended passive cavity This hybrid simulation strategy combines a tra

Stijn Cuyvers 3 Sep 21, 2022
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
A vision library for performing sliced inference on large images/small objects

SAHI: Slicing Aided Hyper Inference A vision library for performing sliced inference on large images/small objects Overview Object detection and insta

Open Business Software Solutions 2.3k Jan 04, 2023
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022