scikit-learn is a python module for machine learning built on top of numpy / scipy

Overview

About

scikit-learn is a python module for machine learning built on top of numpy / scipy.

The purpose of the scikit-learn-tutorial subproject is to learn how to apply machine learning to practical situations using the algorithms implemented in the scikit-learn library.

The target audience is experienced Python developers familiar with numpy and scipy.

Downloading the PDF

Prebuilt versions of this tutorial are available from the GitHub download page.

While following the exercices you might find helpful to use the official scikit-learn user guide (PDF) as a more comprehensive reference:

If you need a numpy refresher please first have a look at the Scientific Python lecture notes (PDF), esp. chapter 4.

Online HTML version

The prebuilt HTML version is at:

http://scikit-learn.github.com/scikit-learn-tutorial

Source code of the tutorial and exercises

The project is hosted on GitHub at https://github.com/scikit-learn/scikit-learn-tutorial

Building the tutorial

You can build the HTML and PDF (requires pdflatex) versions of this tutorial by installing sphinx (1.0.0+):

$ sudo pip install -U sphinx

Then for the html variant:

$ cd tutorial
$ make html

The results is available in the _build/html/ subdolder. Point your browser to the index.html file for table of content.

To build the PDF variant:

$ make latex
$ cd _build/latex
$ pdflatex scikit_learn_tutorial.tex

You should get a file named scikit_learn_tutorial.pdf as output.

Testing

The example snippets in the rST source files can be tested with nose:

$ nosetests -s --with-doctest --doctest-tests --doctest-extension=rst

Contact the developers

If you have questions about this tutorial you can ask them on the scikit-learn mailing list on sourceforge: https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Some developers tend to hang around the channel #scikit-learn at irc.freenode.net, especially during the week preparing a new release. If nobody is available to answer your questions there don't hesitate to ask it on the mailing list to reach a wider audience.

License

This tutorial is distributed under the Creative Commons Attribution 3.0 license. The Python example code and solutions to exercises are distributed under the same license as the scikit-learn project (Simplified BSD).

A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

Arundo Analytics 888 Dec 30, 2022
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching.

A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching. The solver will solve equations of the type: A can be

Sanjeet N. Dasharath 3 Feb 15, 2022
Automated Time Series Forecasting

AutoTS AutoTS is a time series package for Python designed for rapidly deploying high-accuracy forecasts at scale. There are dozens of forecasting mod

Colin Catlin 652 Jan 03, 2023
Binary Classification Problem with Machine Learning

Binary Classification Problem with Machine Learning Solving Approach: 1) Ultimate Goal of the Assignment: This assignment is about solving a binary cl

Dinesh Mali 0 Jan 20, 2022
This repo includes some graph-based CTR prediction models and other representative baselines.

Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F

Big Data and Multi-modal Computing Group, CRIPAC 47 Dec 30, 2022
Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

24 Oct 27, 2022
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
A simple machine learning package to cluster keywords in higher-level groups.

Simple Keyword Clusterer A simple machine learning package to cluster keywords in higher-level groups. Example: "Senior Frontend Engineer" -- "Fronte

Andrea D'Agostino 10 Dec 18, 2022
A complete guide to start and improve in machine learning (ML)

A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art

Louis-François Bouchard 3.3k Jan 04, 2023
Python package for machine learning for healthcare using a OMOP common data model

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.

Sontag Lab 75 Jan 03, 2023
dirty_cat is a Python module for machine-learning on dirty categorical variables.

dirty_cat dirty_cat is a Python module for machine-learning on dirty categorical variables.

637 Dec 29, 2022
A comprehensive repository containing 30+ notebooks on learning machine learning!

A comprehensive repository containing 30+ notebooks on learning machine learning!

Jean de Dieu Nyandwi 3.8k Jan 09, 2023
This jupyter notebook project was completed by me and my friend using the dataset from Kaggle

ARM This jupyter notebook project was completed by me and my friend using the dataset from Kaggle. The world Happiness 2017, which ranks 155 countries

1 Jan 23, 2022
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray

A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo

2.5k Dec 28, 2022
Machine Learning e Data Science com Python

Machine Learning e Data Science com Python Arquivos do curso de Data Science e Machine Learning com Python na Udemy, cliqe aqui para acessá-lo. O prin

Renan Barbosa 1 Jan 27, 2022
Nevergrad - A gradient-free optimization platform

Nevergrad - A gradient-free optimization platform nevergrad is a Python 3.6+ library. It can be installed with: pip install nevergrad More installati

Meta Research 3.4k Jan 08, 2023
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022
Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Oracle 95 Dec 28, 2022
Machine Learning Study 혼자 해보기

Machine Learning Study 혼자 해보기 기여자 (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil

Teddy Lee 1.7k Jan 01, 2023
Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible

IMBENS: Class-imbalanced Ensemble Learning in Python Language: English | Chinese/中文 Links: Documentation | Gallery | PyPI | Changelog | Source | Downl

Zhining Liu 176 Jan 04, 2023