Extreme Learning Machine implementation in Python

Overview

Python-ELM v0.3

---> ARCHIVED March 2021 <---

This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn.
From the abstract:

It is clear that the learning speed of feedforward neural networks is in general far slower than required and it has been a major bottleneck in their applications for past decades. Two key reasons behind may be: 1) the slow gradient- based learning algorithms are extensively used to train neural networks, and 2) all the parameters of the networks are tuned iteratively by using such learning algorithms. Unlike these traditional implementations, this paper proposes a new learning algorithm called extreme learning machine (ELM) for single- hidden layer feedforward neural networks (SLFNs) which ran- domly chooses the input weights and analytically determines the output weights of SLFNs. In theory, this algorithm tends to provide the best generalization performance at extremely fast learning speed. The experimental results based on real- world benchmarking function approximation and classification problems including large complex applications show that the new algorithm can produce best generalization performance in some cases and can learn much faster than traditional popular learning algorithms for feedforward neural networks.

It's a work in progress, so things can/might/will change.

David C. Lambert
dcl [at] panix [dot] com

Copyright © 2013
License: Simple BSD

Files

random_layer.py

Contains the RandomLayer, MLPRandomLayer, RBFRandomLayer and GRBFRandomLayer classes.

RandomLayer is a transformer that creates a feature mapping of the inputs that corresponds to a layer of hidden units with randomly generated components.

The transformed values are a specified function of input activations that are a weighted combination of dot product (multilayer perceptron) and distance (rbf) activations:

  input_activation = alpha * mlp_activation + (1-alpha) * rbf_activation

  mlp_activation(x) = dot(x, weights) + bias
  rbf_activation(x) = rbf_width * ||x - center||/radius

mlp_activation is multi-layer perceptron input activation

rbf_activation is radial basis function input activation

alpha and rbf_width are specified by the user

weights and biases are taken from normal distribution of mean 0 and sd of 1

centers are taken uniformly from the bounding hyperrectangle of the inputs, and

radius = max(||x-c||)/sqrt(n_centers*2)

(All random components can be supplied by the user by providing entries in the dictionary given as the user_components parameter.)

The input activation is transformed by a transfer function that defaults to numpy.tanh if not specified, but can be any callable that returns an array of the same shape as its argument (the input activation array, of shape [n_samples, n_hidden]).

Transfer functions provided are:

  • sine
  • tanh
  • tribas
  • inv_tribas
  • sigmoid
  • hardlim
  • softlim
  • gaussian
  • multiquadric
  • inv_multiquadric

MLPRandomLayer and RBFRandomLayer classes are just wrappers around the RandomLayer class, with the alpha mixing parameter set to 1.0 and 0.0 respectively (for 100% MLP input activation, or 100% RBF input activation)

The RandomLayer, MLPRandomLayer, RBFRandomLayer classes can take a callable user provided transfer function. See the docstrings and the example ipython notebook for details.

The GRBFRandomLayer implements the Generalized Radial Basis Function from [3]

elm.py

Contains the ELMRegressor, ELMClassifier, GenELMRegressor, and GenELMClassifier classes.

GenELMRegressor and GenELMClassifier both take *RandomLayer instances as part of their contructors, and an optional regressor (conforming to the sklearn API)for performing the fit (instead of the default linear fit using the pseudo inverse from scipy.pinv2). GenELMClassifier is little more than a wrapper around GenELMRegressor that binarizes the target array before performing a regression, then unbinarizes the prediction of the regressor to make its own predictions.

The ELMRegressor class is a wrapper around GenELMRegressor that uses a RandomLayer instance by default and exposes the RandomLayer parameters in the constructor. ELMClassifier is similar for classification.

plot_elm_comparison.py

A small demo (based on scikit-learn's plot_classifier_comparison) that shows the decision functions of a couple of different instantiations of the GenELMClassifier on three different datasets.

elm_notebook.py

An IPython notebook, illustrating several ways to use the *ELM* and *RandomLayer classes.

Requirements

Written using Python 2.7.3, numpy 1.6.1, scipy 0.10.1, scikit-learn 0.13.1 and ipython 0.12.1

References

[1] http://www.extreme-learning-machines.org

[2] G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, "Extreme Learning Machine:
          Theory and Applications", Neurocomputing, vol. 70, pp. 489-501,
          2006.
          
[3] Fernandez-Navarro, et al, "MELM-GRBF: a modified version of the  
          extreme learning machine for generalized radial basis function  
          neural networks", Neurocomputing 74 (2011), 2502-2510
Owner
David C. Lambert
David C. Lambert
A python fast implementation of the famous SVD algorithm popularized by Simon Funk during Netflix Prize

⚡ funk-svd funk-svd is a Python 3 library implementing a fast version of the famous SVD algorithm popularized by Simon Funk during the Neflix Prize co

Geoffrey Bolmier 171 Dec 19, 2022
Predict the demand for electricity (R) - FRENCH

06.demand-electricity Predict the demand for electricity (R) - FRENCH Prédisez la demande en électricité Prérequis Pour effectuer ce projet, vous devr

1 Feb 13, 2022
Meerkat provides fast and flexible data structures for working with complex machine learning datasets.

Meerkat makes it easier for ML practitioners to interact with high-dimensional, multi-modal data. It provides simple abstractions for data inspection, model evaluation and model training supported by

Robustness Gym 115 Dec 12, 2022
Tools for mathematical optimization region

Tools for mathematical optimization region

林景 15 Nov 30, 2022
A Lucid Framework for Transparent and Interpretable Machine Learning Models.

Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod

lucidmode 15 Aug 12, 2022
Distributed Computing for AI Made Simple

Project Home Blog Documents Paper Media Coverage Join Fiber users email list Uber Open Source 997 Dec 30, 2022

Automated Time Series Forecasting

AutoTS AutoTS is a time series package for Python designed for rapidly deploying high-accuracy forecasts at scale. There are dozens of forecasting mod

Colin Catlin 652 Jan 03, 2023
PySpark ML Bank Churn Prediction

PySpark-Bank-Churn Surname: corresponds to the record (row) number and has no effect on the output. CreditScore: contains random values and has no eff

kemalgunay 2 Nov 11, 2021
monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture

monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical alg

RICOS Co. Ltd. 179 Dec 21, 2022
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions

ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in

Computational Data Science Lab 182 Dec 31, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.

Simple but maybe too simple config management through python data classes. We use it for machine learning.

Eren Gölge 67 Nov 29, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
Mixing up the Invariant Information clustering architecture, with self supervised concepts from SimCLR and MoCo approaches

Self Supervised clusterer Combined IIC, and Moco architectures, with some SimCLR notions, to get state of the art unsupervised clustering while retain

Bendidi Ihab 9 Feb 13, 2022
Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Amplo 10 May 15, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022
Machine Learning Techniques using python.

👋 Hi, I’m Fahad from TEXAS TECH. 👀 I’m interested in Optimization / Machine Learning/ Statistics 🌱 I’m currently learning Machine Learning and Stat

FAHAD MOSTAFA 1 Jan 19, 2022
Spark development environment for k8s

Local Spark Dev Env with Docker Development environment for k8s. Using the spark-operator image to ensure it will be the same environment. Start conta

Otacilio Filho 18 Jan 04, 2022