Graphsignal is a machine learning model monitoring platform.

Overview

Graphsignal Logger

License Version Downloads SaaS Status

Overview

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model performance and availability. Learn more at graphsignal.com.

Model Dashboard

Model Monitoring

  • Data monitoring. Monitor offline and online predictions for data validity and anomalies, data drift, model drift, exceptions, and more.
  • Automatic issue detection. Graphsignal automatically detects and notifies on issues with data and models, no need to manually setup and maintain complex rules.
  • Model framework and deployment agnostic. Monitor models serving online, in streaming apps, accessed via APIs or offline, running batch predictions.
  • Any scale and data size. Graphsignal logger only sends data statistics allowing it to scale with your application and data.
  • Data privacy. No raw data is sent to Graphsignal cloud, only data statistics and metadata.
  • Team access. Easily add team members to your account, as many as you need.

Documentation

See full documentation at graphsignal.com/docs.

Getting Started

1. Installation

Install the Python logger by running

pip install graphsignal

Or clone and install the GitHub repository.

git clone https://github.com/graphsignal/graphsignal.git
python setup.py install

Import the package in your application

import graphsignal

2. Configuration

Configure the logger by specifying your API key.

graphsignal.configure(api_key='my_api_key')

To get an API key, sign up for a free account at graphsignal.com. The key can then be found in your account's Settings / API Keys page.

3. Logging session

Get logging session for a deployed model identified by deployment name. Multiple sessions can be used in parallel in case of multi-model scrips or servers.

sess = graphsignal.session(deployment_name='model1_prod')

Set any model metadata, e.g. model version or model graph details.

sess.set_metadata('key1', 'val1')

4. Prediction Logging

Log single or batch model prediction/inference data. Pass prediction data according to supported data formats using list, dict, numpy.ndarray or pandas.DataFrame.

Computed data statistics are uploaded at certain intervals and on process exit.

sess.log_prediction(input_data={'feat1': 1, 'feat2': 2.0, 'feat3': 'yes'}, output_data=[0.1])

Report prediction exceptions and errors.

sess.log_exception(message='wrong format', extra_info={'feature': 'F1'})

See prediction logging API reference for full documentation.

5. Dashboards and Alerting

After prediction logging is setup, sign in to Graphsignal to check out data dashboards and set up alerting for automatically detected issues.

Example

import numpy as np
from tensorflow import keras
import graphsignal

# Configure Graphsignal logger
graphsignal.configure(api_key='my_api_key')

# Get logging session for the model
sess = graphsignal.session(deployment_name='mnist_prod')


model = keras.models.load_model('mnist_model.h5')

(_, _), (x_test, _) = keras.datasets.mnist.load_data()
x_test = x_test.astype("float32") / 255
x_test = np.expand_dims(x_test, -1)

try:
  output = model.predict(x_test)

  # See supported data formats description at 
  # https://graphsignal.com/docs/python-logger/supported-data-formats
  sess.log_prediction(output_data=output)
except:
  sess.log_exception(exc_info=True)

See more examples.

Performance

Graphsignal logger uses streaming algorithms for computing data statistics to ensure production-level performance and memory usage. Data statistics are computed for time windows and sent to Graphsignal by the background thread.

Since only data statistics is sent to our servers, there is no limitation on logged data size.

Security and Privacy

Graphsignal logger can only open outbound connections to log-api.graphsignal.com and send data, no inbound connections or commands are possible.

No raw data is sent to Graphsignal cloud, only data statistics and metadata.

Troubleshooting

To enable debug logging, add debug_mode=True to configure(). If the debug log doesn't give you any hints on how to fix a problem, please report it to our support team via your account.

In case of connection issues, please make sure outgoing connections to https://log-api.graphsignal.com are allowed.

A repository to index and organize the latest machine learning courses found on YouTube.

📺 ML YouTube Courses At DAIR.AI we ❤️ open education. We are excited to share some of the best and most recent machine learning courses available on

DAIR.AI 9.6k Jan 01, 2023
A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search (Manhattan Distance Heuristic)

A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and the A* Search (using the Manhattan Distance Heuristic)

17 Aug 14, 2022
Python package for machine learning for healthcare using a OMOP common data model

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.

Sontag Lab 75 Jan 03, 2023
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.4k Jan 15, 2022
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

Daniel Formoso 5.7k Dec 30, 2022
About Solve CTF offline disconnection problem - based on python3's small crawler

About Solve CTF offline disconnection problem - based on python3's small crawler, support keyword search and local map bed establishment, currently support Jianshu, xianzhi,anquanke,freebuf,seebug

天河 32 Oct 25, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

SUN Group @ UMN 28 Aug 03, 2022
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021
A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al.

pyUpSet A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al. Contents Purpose How to install How it work

288 Jan 04, 2023
Customers Segmentation with RFM Scores and K-means

Customer Segmentation with RFM Scores and K-means RFM Segmentation table: K-Means Clustering: Business Problem Rule-based customer segmentation machin

5 Aug 10, 2022
End to End toy example of MLOps

churn_model MLOps Toy Example End to End You might find below links useful Connect VSCode to Git MLFlow Port Heroku App Project Organization ├── LICEN

Ashish Tele 6 Feb 06, 2022
Bodywork deploys machine learning projects developed in Python, to Kubernetes.

Bodywork deploys machine learning projects developed in Python, to Kubernetes. It helps you to: serve models as microservices execute batch jobs run r

Bodywork Machine Learning 409 Jan 01, 2023
scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms.

Sklearn-genetic-opt scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms. This is meant to be an alternativ

Rodrigo Arenas 180 Dec 20, 2022
Time series changepoint detection

changepy Changepoint detection in time series in pure python Install pip install changepy Examples from changepy import pelt from cha

Rui Gil 92 Nov 08, 2022
Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions.

Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions. There is a lot more info if you head over to the documentation. You can also take a look at

Better 240 Dec 26, 2022
JMP is a Mixed Precision library for JAX.

Mixed precision training [0] is a technique that mixes the use of full and half precision floating point numbers during training to reduce the memory bandwidth requirements and improve the computatio

DeepMind 108 Dec 31, 2022
Lseng-iseng eksplor Machine Learning dengan menggunakan library Scikit-Learn

Kalo dengar istilah ML, biasanya rada ambigu. Soalnya punya beberapa kepanjangan, seperti Mobile Legend, Makan Lontong, Ma**ng L*v* dan lain-lain. Tapi pada repo ini membahas Machine Learning :)

Alfiyanto Kondolele 1 Apr 06, 2022
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python

BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python. Some of the algorithms included are mor

Jared M. Smith 40 Aug 26, 2022
Python factor analysis library (PCA, CA, MCA, MFA, FAMD)

Prince is a library for doing factor analysis. This includes a variety of methods including principal component analysis (PCA) and correspondence anal

Max Halford 915 Dec 31, 2022
BigDL: Distributed Deep Learning Framework for Apache Spark

BigDL: Distributed Deep Learning on Apache Spark What is BigDL? BigDL is a distributed deep learning library for Apache Spark; with BigDL, users can w

4.1k Jan 09, 2023