Official implementation of Densely connected normalizing flows

Overview

Densely connected normalizing flows

This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster available here.

PWC PWC

Setup

  • CUDA 11.1
  • Python 3.8
pip install -r requirements.txt
pip install -e .

Training

cd ./experiments/image

CIFAR-10:

python train.py --epochs 400 --batch_size 64 --optimizer adamax --lr 1e-3  --gamma 0.9975 --warmup 5000  --eval_every 1 --check_every 10 --dataset cifar10 --augmentation eta --block_conf 6 4 1 --layers_conf  5 6 20  --layer_mid_chnls 48 48 48 --growth_rate 10  --name DF_74_10
python train_more.py --model ./log/cifar10_8bit/densenet-flow/expdecay/DF_74_10 --new_lr 2e-5 --new_epochs 420

ImageNet32:

python train.py --epochs 20 --batch_size 64 --optimizer adamax --lr 1e-3  --gamma 0.95 --warmup 5000  --eval_every 1 --check_every 10 --dataset imagenet32 --augmentation eta --block_conf 6 4 1 --layers_conf  5 6 20  --layer_mid_chnls 48 48 48 --growth_rate 10  --name DF_74_10
python train_more.py --model ./log/imagenet32_8bit/densenet-flow/expdecay/DF_74_10 --new_lr 2e-5 --new_epochs 22

ImageNet64:

python train.py --epochs 10 --batch_size 32 --optimizer adamax --lr 1e-3  --gamma 0.95 --warmup 5000  --eval_every 1 --check_every 10 --dataset imagenet64 --augmentation eta --block_conf 6 4 1 --layers_conf  5 6 20  --layer_mid_chnls 48 48 48 --growth_rate 10  --name DF_74_10
python train_more.py --model ./log/imagenet64_8bit/densenet-flow/expdecay/DF_74_10 --new_lr 2e-5 --new_epochs 11

CelebA:

python train.py --epochs 50 --batch_size 32 --optimizer adamax --lr 1e-3  --gamma 0.95 --warmup 5000  --eval_every 1 --check_every 10 --dataset celeba --augmentation horizontal_flip --block_conf 6 4 1 --layers_conf  5 6 20  --layer_mid_chnls 48 48 48 --growth_rate 10  --name DF_74_10
python train_more.py --model ./log/celeba_8bit/densenet-flow/expdecay/DF_74_10 --new_lr 2e-5 --new_epochs 55

Note: Download instructions for ImageNet and CelebA are defined in denseflow/data/datasets/image/{dataset}.py

Evaluation

CIFAR-10:

python eval_loglik.py --model PATH_TO_MODEL --k 1000 --kbs 50

ImageNet32:

python eval_loglik.py --model PATH_TO_MODEL --k 200 --kbs 50

ImageNet64 and CelebA:

python eval_loglik.py --model PATH_TO_MODEL --k 200 --kbs 25

Model weights

Model weights are stored here.

Samples generation

Generated samples are stored in PATH_TO_MODEL/samples

python eval_sample.py --model PATH_TO_MODEL

Note: PATH_TO_MODEL has to contain check directory.

ImageNet 32x32

Alt text

ImageNet 64x64

Alt text

CelebA

Alt text

Acknowledgements

Significant part of this code benefited from SurVAE [1] code implementation, available under MIT license.

References

[1] Didrik Nielsen, Priyank Jaini, Emiel Hoogeboom, Ole Winther, and Max Welling. Survae flows: Surjections to bridge the gap between vaes and flows. InAdvances in Neural Information Processing Systems 33. Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020.

Owner
Matej Grcić
PhD Student | Research associate focused on Computer Vision @ University of Zagreb, Faculty of Electrical Engineering and Computing
Matej Grcić
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)

LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.

benfour 16 Sep 28, 2022
Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Ian Pointer 368 Dec 17, 2022
For visualizing the dair-v2x-i dataset

3D Detection & Tracking Viewer The project is based on hailanyi/3D-Detection-Tracking-Viewer and is modified, you can find the original version of the

34 Dec 29, 2022
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

Facebook Research 25.5k Jan 07, 2023
Transfer Learning for Pose Estimation of Illustrated Characters

bizarre-pose-estimator Transfer Learning for Pose Estimation of Illustrated Characters Shuhong Chen *, Matthias Zwicker * WACV2022 [arxiv] [video] [po

Shuhong Chen 142 Dec 28, 2022
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs

GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]

MIT HAN Lab 1k Jan 07, 2023
Masked regression code - Masked Regression

Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize

Arbish Akram 1 Dec 23, 2021
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
Rlmm blender toolkit - A set of tools to streamline level generation in UDK straight from Blender

rlmm_blender_toolkit A set of tools to streamline level generation in UDK straig

Rocket League Mapmaking 0 Jan 15, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge.

KAIROS MineRL BASALT Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL B

Vinicius G. Goecks 37 Oct 30, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023