Code and datasets for TPAMI 2021

Overview

SkeletonNet

This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Please download the above datasets at the first, and then put them under the SkeletonNet/sharedata folder.

Prepare Skeleton points/volumes

  • If you want to use our skeletal point cloud extraction code, you can download the skeleton extraction code. This code is built on Visual Studio2013 + Qt.
  • If you want to convert the skeletal point clouds to skeletal volumes, you can run the below scripts.
python sharedata/prepare_skeletalvolume.py --cats 03001627 --vx_res 32
python sharedata/prepare_skeletalvolume2.py --cats 03001627 --vx_res 64
python sharedata/prepare_skeletalvolume2.py --cats 03001627 --vx_res 128
python sharedata/prepare_skeletalvolume2.py --cats 03001627 --vx_res 256

Before running above scripts, you need to change raw_pointcloud_dir and upsample_skeleton_dir used when extracting skeletal points.

Installation

First you need to create an anaconda environment called SkeletonNet using

conda env create -f environment.yaml
conda activate SkeletonNet

Implementation details

For each stage, please refer to the README.md under the Skeleton_Inference/SkeGCNN/SkeDISN folder.

Pre-trained models

We provided pre-trained models of SkeletonNet, SkeGCNN, SkeDISN.

  1. The pre-trained model of SkeletonNet should be put in the folder of ./Skeleton_Inference/checkpoints/all.
  2. The pre-trained model of SkeGCNN should be put in the folder of ./SkeGCNN/checkpoint/skegcnn.
  3. The pre-trained model of SkeDISN should be put in the folder of ./SkeDISN/checkpoint/skedisn_occ.

Demo

  1. use the SkeletonNet to generate base meshes or high-resolution volumes.
cd Skeleton_Inference
bash scripts/all/demo.sh
cd ..
  1. use the SkeGCNN to bridge the explicit mesh recovery via mesh deformations.
cd SkeGCNN
bash scripts/demo.sh
cd ..
  1. use the SkeDISN to regularize the implicit mesh recovery via skeleton local features.
cd SkeDISN
bash scripts/demo.sh
cd ..

Evalation

Please refer to the README.md under the ./SkeDISN folder.

Citation

If you find this work useful in your research, please consider citing:

@InProceedings{Tang_2019_CVPR,
author = {Tang, Jiapeng and Han, Xiaoguang and Pan, Junyi and Jia, Kui and Tong, Xin},
title = {A Skeleton-Bridged Deep Learning Approach for Generating Meshes of Complex Topologies From Single RGB Images},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}

@article{tang2020skeletonnet,
  title={SkeletonNet: A Topology-Preserving Solution for Learning Mesh Reconstruction of Object Surfaces from RGB Images},
  author={Tang, Jiapeng and Han, Xiaoguang and Tan, Mingkui and Tong, Xin and Jia, Kui},
  journal={arXiv preprint arXiv:2008.05742},
  year={2020}
}

Contact

If you have any questions, please feel free to contact with Tang Jiapeng [email protected] or [email protected]

Owner
Research lab focusing on CV, ML, and AI
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
Detect roadway lanes using Python OpenCV for project during the 5th semester at DHBW Stuttgart for lecture in digital image processing.

Find Line Detection (Image Processing) Identifying lanes of the road is very common task that human driver performs. It's important to keep the vehicl

LMF 4 Jun 21, 2022
A list of Machine Learning Art Colabs

ML Visual Art Colabs A list of cool Colabs on Machine Learning Imagemaking or other artistic purposes 3D Ken Burns Effect Ken Burns Effect by Manuel R

Derrick Schultz (he/him) 789 Dec 12, 2022
A library for hidden semi-Markov models with explicit durations

hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for

Joris Vankerschaver 69 Dec 20, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
Open source hardware and software platform to build a small scale self driving car.

Donkeycar is minimalist and modular self driving library for Python. It is developed for hobbyists and students with a focus on allowing fast experimentation and easy community contributions.

Autorope 2.4k Jan 04, 2023
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
U-Net: Convolutional Networks for Biomedical Image Segmentation

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Yihui He 401 Nov 21, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
Neural Network to colorize grayscale images

#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au

Pavel Hanchar 3.6k Dec 24, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022