Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

Related tags

Deep LearningDFN
Overview

DFN:Distributed Feedback Network for Single-Image Deraining

Abstract

Recently, deep convolutional neural networks have achieved great success for single-image deraining. However, affected by the intrinsic overlapping between rain streaks and background texture patterns, a majority of these methods tend to almost remove texture details in rain-free regions and lead to over-smoothing effects in the recovered background. To generate reasonable rain streak layers and improve the reconstruction quality of the background, we propose a distributed feedback network (DFN) in recurrent structure. A novel feedback block is designed to implement the feedback mechanism. In each feedback block, the hidden state with high-level information (output) will flow into the next iteration to correct the low-level representations (input). By stacking multiple feedback blocks, the proposed network where the hidden states are distributed can extract powerful high-level representations for rain streak layers. Curriculum learning is employed to connect the loss of each iteration and ensure that hidden states contain the notion of output. In addition, a self-ensemble strategy for rain removal task, which can retain the approximate vertical character of rain streaks, is explored to maximize the potential performance of the deraining model. Extensive experimental results demonstrated the superiority of the proposed method in comparison with other deraining methods.

Image

Requirements

*Python 3.7,Pytorch >= 0.4.0
*Requirements: opencv-python
*Platforms: Ubuntu 18.04,cuda-10.2
*MATLAB for calculating PSNR and SSIM

Datasets

DFN is trained and tested on five benchamark datasets: Rain100L[1],Rain100H[1],RainLight[2],RainHeavy[2] and Rain12[3]. It should be noted that DFN is trained on strict 1,254 images for Rain100H.

*Note:

(i) The authors of [1] updated the Rain100L and Rain100H, we call the new datasets as RainLight and RainHeavy here.

(ii) The Rain12 contains only 12 pairs of testing images, we use the model trained on Rain100L to test on Rain12.

Getting Started

Test

All the pre-trained models were placed in ./logs/.

Run the test_DFN.py to obtain the deraining images. Then, you can calculate the evaluation metrics by run the MATLAB scripts in ./statistics/. For example, if you want to compute the average PSNR and SSIM on Rain100L, you can run the Rain100L.m.

Train

If you want to train the models, you can run the train_DFN.py and don't forget to change the args in this file. Or, you can run in the terminal by the following code:

python train_DFN.py --save_path path_to_save_trained_models --data_path path_of_the_training_dataset

Results

Average PSNR and SSIM values of DFN on five datasets are shown:

Datasets GMM DDN ResGuideNet JORDER-E SSIR PReNet BRN MSPFN DFN DFN+
Rain100L 28.66/0.865 32.16/0.936 33.16/0.963 - 32.37/0.926 37.48/0.979 38.16/0.982 37.5839/0.9784 39.22/0.985 39.85/0.987
Rain100H 15.05/0.425 21.92/0.764 25.25/0.841 - 22.47/0.716 29.62/0.901 30.73/0.916 30.8239/0.9055 31.40/0.926 31.81/0.930
RainLight - 31.66/0.922 - 39.13/0.985 32.20/0.929 37.93/0.983 38.86/0.985 39.7540/0.9862 39.53/0.987 40.12/0.988
RainHeavy - 22.03/0.713 - 29.21/0.891 22.17/0.719 29.36/0.903 30.27/0.917 30.7112/0.9129 31.07/0.927 31.47/0.931
Rain12 32.02/0.855 31.78/0.900 29.45/0.938 - 34.02/0.935 36.66/0.961 36.74/0.959 35.7780/0.9514 37.19/0.961 37.55/0.963

Image

References

[1]Yang W, Tan R, Feng J, Liu J, Guo Z, and Yan S. Deep joint rain detection and removal from a single image. In IEEE CVPR 2017.

[2]Yang W, Tan R, Feng J, Liu J, Yan S, and Guo Z. Joint rain detection and removal from a single image with contextualized deep networks. IEEE T-PAMI 2019.

[3]Li Y, Tan RT, Guo X, Lu J, and Brown M. Rain streak removal using layer priors. In IEEE CVPR 2016.

Citation

If you find our research or code useful for you, please cite our paper:

@article{DING2021,
  title = {Distributed Feedback Network for Single-Image Deraining},
  journal = {Information Sciences},
  year = {2021},
  issn = {0020-0255},
  doi = {https://doi.org/10.1016/j.ins.2021.02.080},
  url = {https://www.sciencedirect.com/science/article/pii/S0020025521002371},
  author = {Jiajun Ding and Huanlei Guo and Hang Zhou and Jun Yu and Xiongxiong He and Bo Jiang}
}
Owner
Zhejiang University of Technology(ZJUT). Research: Image Enhencement, Few-shot Learning, GAN.
Everything about being a TA for ITP/AP course!

تی‌ای بودن! تی‌ای یا دستیار استاد از نقش‌های رایج بین دانشجویان مهندسی است، این ریپوزیتوری قرار است نکات مهم درمورد تی‌ای بودن و تی ای شدن را به ما نش

<a href=[email protected]"> 14 Sep 10, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
basic tutorial on pytorch

Quick Tutorial on PyTorch PyTorch Basics Linear Regression Logistic Regression Artificial Neural Networks Convolutional Neural Networks Recurrent Neur

7 Sep 15, 2022
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Hongwen Zhang 450 Dec 28, 2022
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection" (CVPR 2021)

ReDet: A Rotation-equivariant Detector for Aerial Object Detection ReDet: A Rotation-equivariant Detector for Aerial Object Detection (CVPR2021), Jiam

csuhan 334 Dec 23, 2022
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation [Project] [Paper] [arXiv] [Home] Official implementation of FastFCN:

Wu Huikai 815 Dec 29, 2022
An implementation of the AdaOPS (Adaptive Online Packing-based Search), which is an online POMDP Solver used to solve problems defined with the POMDPs.jl generative interface.

AdaOPS An implementation of the AdaOPS (Adaptive Online Packing-guided Search), which is an online POMDP Solver used to solve problems defined with th

9 Oct 05, 2022
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022