Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Related tags

Deep LearningK2T
Overview

Keyword2Text

This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use it for your own research, please cite us.

Setup

  1. Download and unzip the repository.
  2. Create a new conda environment and install the required libraries from the requirements.txt file.
conda create -n k2t python=3.6
conda activate k2t
pip install -r requirements.txt

A GPU will be required to run the experiments. Make sure you have a results folder.

Run Model

Hyperparameter Study

Uncomment the appropriate lines of run.sh to run the hyperparameter experiments from the paper. For example,

python main.py -mode='next' -file_name=/data/50_keywordsets_eval/word_sets.txt -results_subfolder=guide_vs_no_guide_beams -weight=10.0 -top_p=0.9 -n_generated_sentences=90 -do_guarantee=True

runs K2T with ordered guide words (mode='next') on the random keywords dataset. It runs with lambda=weight=10, nucleus sampling with top-p=0.9, number of generated tokens = 90, and no weight annealing to guarantee word appearance. The results are saved in results/tmp

ROC Story dataset

Uncomment the appropriate line of run.sh to run the model on the ROC story dataset:

python main.py -mode='max' -file_name=/data/ROC/ROCStories_20_storylines_500_0.txt -results_subfolder=final4_ -weight=5.0 -top_p=0.9 -n_generated_sentences=-7 -n_beams=4 -do_guarantee=True -task='ROC'

News Article dataset

Uncomment the appropriate line of run.sh to run the model on the News Article story dataset:

python main_DBS.py -mode='max' -file_name=/data/keyword_to_articles -results_subfolder=tmp -weight=5.0 -top_p=0.9 -n_generated_sentences=-15 -n_beams=4 -do_guarantee=True -task='key2article'

Contents

├── data
│   ├── 50_keywordsets_eval
│   │   └── word_sets.txt
│   ├── keyword_to_articles
│   │   ├── test_10.txt
│   │   ├── test_12.txt
│   │   ├── test_13.txt
│   │   ├── test_14.txt
│   │   ├── test_15.txt
│   │   ├── test_16.txt
│   │   ├── test_4.txt
│   │   ├── test_5.txt
│   │   ├── test_8.txt
│   │   └── test_9.txt
│   └── ROC
│       └── ROCStories_20_storylines_500_0.txt
├── encode_keywords.py
├── encode_keywords_word2vec.py
├── main.py
├── metrics_degen.py
├── metrics_degen_run.sh
├── perplexity.py
├── README.md
├── requirements.txt
├── results
├── run.sh
└── utility_gpt.py


TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
[NeurIPS 2021] "Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks" by Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Cox, Yingyan Lin

Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks Yonggan Fu, Qixuan Yu, Yang Zhang, S

12 Dec 11, 2022
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa

DeepMind 44 Nov 20, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022