VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

Overview

VID-Fusion

VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

Authors: Ziming Ding , Tiankai Yang, Kunyi Zhang, Chao Xu, and Fei Gao from the ZJU FAST Lab.

0. Overview

VID-Fusion is a work to estimate odometry and external force simultaneously by a tightly coupled Visual-Inertial-Dynamics state estimator for multirotors. Just like VIMO, we formulate a new factor in the optimization-based visual-inertial odometry system VINS-Mono. But we compare the dynamics model with the imu measurements to observe the external force and formulate the external force preintegration like imu preintegration. So, the thrust and external force can be added into the classical VIO system such as VINS-Mono as a new factor.

We present:

  • An external force preintegration term for back-end optimization.
  • A complete, robust, tightly-coupled Visual-Inertial-Dynamics state estimator.
  • Demonstration of robust and accurate external force and pose estimation.

Simultaneously estimating the external force and odometry within a sliding window.

Related Paper: VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation, Ziming Ding, Tiankai Yang, Kunyi Zhang, Chao Xu, and Fei Gao, ICRA 2021.

Video Links: bilibili or Youtube.

1. Prerequisites

Our software is developed and only tested in Ubuntu 16.04, ROS Kinetic (ROS Installation), OpenCV 3.3.1.

Ceres Solver (Ceres Installation) is needed.

2. Build on ROS

cd your_catkin_ws/src
git clone [email protected]:ZJU-FAST-Lab/VID-Fusion.git
cd ..
catkin_make  --pkg quadrotor_msgs  # pre-build msg
catkin_make

3. Run in vid-dataset

cd your_catkin_ws
source ~/catkin_ws/devel/setup.bash
roslaunch vid_estimator vid_realworld.launch
roslaunch benchmark_publisher publish.launch #(option)
rosbag play YOUR_PATH_TO_DATASET

We provide the experiment data for testing, in which the vid-experiment-dataset is in ros bag type. The dataset provides two kinds of scenarios: tarj8_with_gt and line_with_force_gt.

  • tarj8_with_gt is a dataset with odometry groundtruth. The drone flys with a payload.

  • line_with_force_gt is a dataset with external force groundtruth. The drone connects a force sensor via a elastic rope.

A new visual-inertial-dynamics dataset with richer scenarios is provided in VID-Dataset.

The drone information should be provided in VID-Fusion/config/experiments/drone.yaml. It is noticed that you should use the proper parameter of the drone such as the mass and the thrust_coefficient, according to the related bag file.

As for the benchmark comparison, we naively edit the benchmark_publisher from VINS-Mono to compare the estimated path, and add a external force visualization about the estimated force and the ground truth force. The ground truth data is in VID-Fusion/benchmark_publisher/data. You should switch path or force comparison by cur_kind in publish.launch (0 for path comparison and 1 for force comparison).

As for model identification, we collect the hovering data for identification. For the two data bags, tarj8_with_gt and line_with_force_gt, we also provide the hovering data for thrust_coefficient identification. After system identification, you should copy the thrust_coefficient result to VID-Fusion/config/experiments/drone.yaml

roslaunch system_identification system_identify.launch 
rosbag play YOUR_PATH_TO_DATASET
#copy the thrust_coefficient result to VID-Fusion/config/experiments/drone.yaml

The external force is the resultant force except for rotor thrust and aircraft gravity. You can set force_wo_rotor_drag as 1 in config file to subtract the rotor drag force from the estimated force. And the related drag coefficient k_d_x and k_d_y should be given.

4. Acknowledgements

We replace the model preintegration and dynamics factor from VIMO, and formulate the proposed dynamics and external force factor atop the source code of VIMO and VINS-Mono. The ceres solver is used for back-end non-linear optimization, and DBoW2 for loop detection, and a generic camera model. The monocular initialization, online extrinsic calibration, failure detection and recovery, loop detection, and global pose graph optimization, map merge, pose graph reuse, online temporal calibration, rolling shutter support are also from VINS-Mono.

5. Licence

The source code is released under GPLv3 license.

6. Maintaince

For any technical issues, please contact Ziming Ding ([email protected]) or Fei GAO ([email protected]).

For commercial inquiries, please contact Fei GAO ([email protected]).

Owner
ZJU FAST Lab
ZJU FAST Lab
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022
PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

Study-CSRNet-pytorch This is the PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

0 Mar 01, 2022
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection" (CVPR 2021)

ReDet: A Rotation-equivariant Detector for Aerial Object Detection ReDet: A Rotation-equivariant Detector for Aerial Object Detection (CVPR2021), Jiam

csuhan 334 Dec 23, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
9th place solution

AllDataAreExt-Galixir-Kaggle-HPA-2021-Solution Team Members Qishen Ha is Master of Engineering from the University of Tokyo. Machine Learning Engineer

daishu 5 Nov 18, 2021
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
A project that uses optical flow and machine learning to detect aimhacking in video clips.

waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che

waldo.vision 542 Dec 03, 2022
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo 73 Oct 17, 2022

Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023