VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

Overview

VID-Fusion

VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

Authors: Ziming Ding , Tiankai Yang, Kunyi Zhang, Chao Xu, and Fei Gao from the ZJU FAST Lab.

0. Overview

VID-Fusion is a work to estimate odometry and external force simultaneously by a tightly coupled Visual-Inertial-Dynamics state estimator for multirotors. Just like VIMO, we formulate a new factor in the optimization-based visual-inertial odometry system VINS-Mono. But we compare the dynamics model with the imu measurements to observe the external force and formulate the external force preintegration like imu preintegration. So, the thrust and external force can be added into the classical VIO system such as VINS-Mono as a new factor.

We present:

  • An external force preintegration term for back-end optimization.
  • A complete, robust, tightly-coupled Visual-Inertial-Dynamics state estimator.
  • Demonstration of robust and accurate external force and pose estimation.

Simultaneously estimating the external force and odometry within a sliding window.

Related Paper: VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation, Ziming Ding, Tiankai Yang, Kunyi Zhang, Chao Xu, and Fei Gao, ICRA 2021.

Video Links: bilibili or Youtube.

1. Prerequisites

Our software is developed and only tested in Ubuntu 16.04, ROS Kinetic (ROS Installation), OpenCV 3.3.1.

Ceres Solver (Ceres Installation) is needed.

2. Build on ROS

cd your_catkin_ws/src
git clone [email protected]:ZJU-FAST-Lab/VID-Fusion.git
cd ..
catkin_make  --pkg quadrotor_msgs  # pre-build msg
catkin_make

3. Run in vid-dataset

cd your_catkin_ws
source ~/catkin_ws/devel/setup.bash
roslaunch vid_estimator vid_realworld.launch
roslaunch benchmark_publisher publish.launch #(option)
rosbag play YOUR_PATH_TO_DATASET

We provide the experiment data for testing, in which the vid-experiment-dataset is in ros bag type. The dataset provides two kinds of scenarios: tarj8_with_gt and line_with_force_gt.

  • tarj8_with_gt is a dataset with odometry groundtruth. The drone flys with a payload.

  • line_with_force_gt is a dataset with external force groundtruth. The drone connects a force sensor via a elastic rope.

A new visual-inertial-dynamics dataset with richer scenarios is provided in VID-Dataset.

The drone information should be provided in VID-Fusion/config/experiments/drone.yaml. It is noticed that you should use the proper parameter of the drone such as the mass and the thrust_coefficient, according to the related bag file.

As for the benchmark comparison, we naively edit the benchmark_publisher from VINS-Mono to compare the estimated path, and add a external force visualization about the estimated force and the ground truth force. The ground truth data is in VID-Fusion/benchmark_publisher/data. You should switch path or force comparison by cur_kind in publish.launch (0 for path comparison and 1 for force comparison).

As for model identification, we collect the hovering data for identification. For the two data bags, tarj8_with_gt and line_with_force_gt, we also provide the hovering data for thrust_coefficient identification. After system identification, you should copy the thrust_coefficient result to VID-Fusion/config/experiments/drone.yaml

roslaunch system_identification system_identify.launch 
rosbag play YOUR_PATH_TO_DATASET
#copy the thrust_coefficient result to VID-Fusion/config/experiments/drone.yaml

The external force is the resultant force except for rotor thrust and aircraft gravity. You can set force_wo_rotor_drag as 1 in config file to subtract the rotor drag force from the estimated force. And the related drag coefficient k_d_x and k_d_y should be given.

4. Acknowledgements

We replace the model preintegration and dynamics factor from VIMO, and formulate the proposed dynamics and external force factor atop the source code of VIMO and VINS-Mono. The ceres solver is used for back-end non-linear optimization, and DBoW2 for loop detection, and a generic camera model. The monocular initialization, online extrinsic calibration, failure detection and recovery, loop detection, and global pose graph optimization, map merge, pose graph reuse, online temporal calibration, rolling shutter support are also from VINS-Mono.

5. Licence

The source code is released under GPLv3 license.

6. Maintaince

For any technical issues, please contact Ziming Ding ([email protected]) or Fei GAO ([email protected]).

For commercial inquiries, please contact Fei GAO ([email protected]).

Owner
ZJU FAST Lab
ZJU FAST Lab
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

37 Dec 03, 2022
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
The repo of Feedback Networks, CVPR17

Feedback Networks http://feedbacknet.stanford.edu/ Paper: Feedback Networks, CVPR 2017. Amir R. Zamir*,Te-Lin Wu*, Lin Sun, William B. Shen, Bertram E

Stanford Vision and Learning Lab 87 Nov 19, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
A Genetic Programming platform for Python with TensorFlow for wicked-fast CPU and GPU support.

Karoo GP Karoo GP is an evolutionary algorithm, a genetic programming application suite written in Python which supports both symbolic regression and

Kai Staats 149 Jan 09, 2023
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
A library for differentiable nonlinear optimization.

Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to

Meta Research 1.1k Dec 30, 2022
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea

Computer Vision Group, Albert-Ludwigs-Universität Freiburg 38 Dec 13, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022