This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Related tags

Deep LearningDEKR
Overview

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression

Introduction

In this paper, we are interested in the bottom-up paradigm of estimating human poses from an image. We study the dense keypoint regression framework that is previously inferior to the keypoint detection and grouping framework. Our motivation is that regressing keypoint positions accurately needs to learn representations that focus on the keypoint regions.

We present a simple yet effective approach, named disentangled keypoint regression (DEKR). We adopt adaptive convolutions through pixel-wise spatial transformer to activate the pixels in the keypoint regions and accordingly learn representations from them. We use a multi-branch structure for separate regression: each branch learns a representation with dedicated adaptive convolutions and regresses one keypoint. The resulting disentangled representations are able to attend to the keypoint regions, respectively, and thus the keypoint regression is spatially more accurate. We empirically show that the proposed direct regression method outperforms keypoint detection and grouping methods and achieves superior bottom-up pose estimation results on two benchmark datasets, COCO and CrowdPose.

Main Results

Results on COCO val2017 without multi-scale test

Backbone Input size #Params GFLOPs AP AP .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_hrnet_w32 512x512 29.6M 45.4 0.680 0.867 0.745 0.621 0.777 0.730 0.898 0.784 0.662 0.827
pose_hrnet_w48 640x640 65.7M 141.5 0.710 0.883 0.774 0.667 0.785 0.760 0.914 0.815 0.706 0.840

Results on COCO val2017 with multi-scale test

Backbone Input size #Params GFLOPs AP AP .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_hrnet_w32 512x512 29.6M 45.4 0.707 0.877 0.771 0.662 0.778 0.759 0.913 0.813 0.705 0.836
pose_hrnet_w48 640x640 65.7M 141.5 0.723 0.883 0.786 0.686 0.786 0.777 0.924 0.832 0.728 0.849

Results on COCO test-dev2017 without multi-scale test

Backbone Input size #Params GFLOPs AP AP .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_hrnet_w32 512x512 29.6M 45.4 0.673 0.879 0.741 0.615 0.761 0.724 0.908 0.782 0.654 0.819
pose_hrnet_w48 640x640 65.7M 141.5 0.700 0.894 0.773 0.657 0.769 0.754 0.927 0.816 0.697 0.832

Results on COCO test-dev2017 with multi-scale test

Backbone Input size #Params GFLOPs AP AP .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_hrnet_w32 512x512 29.6M 45.4 0.698 0.890 0.766 0.652 0.765 0.751 0.924 0.811 0.695 0.828
pose_hrnet_w48 640x640 65.7M 141.5 0.710 0.892 0.780 0.671 0.769 0.767 0.932 0.830 0.715 0.839

Results on CrowdPose test without multi-scale test

Method AP AP .5 AP .75 AP (E) AP (M) AP (H)
pose_hrnet_w32 0.657 0.857 0.704 0.730 0.664 0.575
pose_hrnet_w48 0.673 0.864 0.722 0.746 0.681 0.587

Results on CrowdPose test with multi-scale test

Method AP AP .5 AP .75 AP (E) AP (M) AP (H)
pose_hrnet_w32 0.670 0.854 0.724 0.755 0.680 0.569
pose_hrnet_w48 0.680 0.855 0.734 0.766 0.688 0.584

Results with matching regression results to the closest keypoints detected from the keypoint heatmaps

DEKR-w32-SS DEKR-w32-MS DEKR-w48-SS DEKR-w48-MS
coco_val2017 0.680 0.710 0.710 0.728
coco_test-dev2017 0.673 0.702 0.701 0.714
crowdpose_test 0.655 0.675 0.670 0.683

Note:

  • Flip test is used.
  • GFLOPs is for convolution and linear layers only.

Environment

The code is developed using python 3.6 on Ubuntu 16.04. NVIDIA GPUs are needed. The code is developed and tested using 4 NVIDIA V100 GPU cards for HRNet-w32 and 8 NVIDIA V100 GPU cards for HRNet-w48. Other platforms are not fully tested.

Quick start

Installation

  1. Clone this repo, and we'll call the directory that you cloned as ${POSE_ROOT}.

  2. Install dependencies:

    pip install -r requirements.txt
    
  3. Install COCOAPI:

    # COCOAPI=/path/to/clone/cocoapi
    git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
    cd $COCOAPI/PythonAPI
    # Install into global site-packages
    make install
    # Alternatively, if you do not have permissions or prefer
    # not to install the COCO API into global site-packages
    python3 setup.py install --user
    

    Note that instructions like # COCOAPI=/path/to/install/cocoapi indicate that you should pick a path where you'd like to have the software cloned and then set an environment variable (COCOAPI in this case) accordingly.

  4. Install CrowdPoseAPI exactly the same as COCOAPI.

  5. Init output(training model output directory) and log(tensorboard log directory) directory:

    mkdir output 
    mkdir log
    

    Your directory tree should look like this:

    ${POSE_ROOT}
    ├── data
    ├── model
    ├── experiments
    ├── lib
    ├── tools 
    ├── log
    ├── output
    ├── README.md
    ├── requirements.txt
    └── setup.py
    
  6. Download pretrained models and our well-trained models from zoo(OneDrive) and make models directory look like this:

    ${POSE_ROOT}
    |-- model
    `-- |-- imagenet
        |   |-- hrnet_w32-36af842e.pth
        |   `-- hrnetv2_w48_imagenet_pretrained.pth
        |-- pose_coco
        |   |-- pose_dekr_hrnetw32_coco.pth
        |   `-- pose_dekr_hrnetw48_coco.pth
        |-- pose_crowdpose
        |   |-- pose_dekr_hrnetw32_crowdpose.pth
        |   `-- pose_dekr_hrnetw48_crowdpose.pth
        `-- rescore
            |-- final_rescore_coco_kpt.pth
            `-- final_rescore_crowd_pose_kpt.pth
    

Data preparation

For COCO data, please download from COCO download, 2017 Train/Val is needed for COCO keypoints training and validation. Download and extract them under {POSE_ROOT}/data, and make them look like this:

${POSE_ROOT}
|-- data
`-- |-- coco
    `-- |-- annotations
        |   |-- person_keypoints_train2017.json
        |   `-- person_keypoints_val2017.json
        `-- images
            |-- train2017.zip
            `-- val2017.zip

For CrowdPose data, please download from CrowdPose download, Train/Val is needed for CrowdPose keypoints training. Download and extract them under {POSE_ROOT}/data, and make them look like this:

${POSE_ROOT}
|-- data
`-- |-- crowdpose
    `-- |-- json
        |   |-- crowdpose_train.json
        |   |-- crowdpose_val.json
        |   |-- crowdpose_trainval.json (generated by tools/crowdpose_concat_train_val.py)
        |   `-- crowdpose_test.json
        `-- images.zip

After downloading data, run python tools/crowdpose_concat_train_val.py under ${POSE_ROOT} to create trainval set.

Training and Testing

Testing on COCO val2017 dataset without multi-scale test using well-trained pose model

python tools/valid.py \
    --cfg experiments/coco/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_coco_x140.yaml \
    TEST.MODEL_FILE models/pose_coco/pose_dekr_hrnetw32_coco.pth

Testing on COCO test-dev2017 dataset without multi-scale test using well-trained pose model

python tools/valid.py \
    --cfg experiments/coco/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_coco_x140.yaml \
    TEST.MODEL_FILE models/pose_coco/pose_dekr_hrnetw32_coco.pth \ 
    DATASET.TEST test-dev2017

Testing on COCO val2017 dataset with multi-scale test using well-trained pose model

python tools/valid.py \
    --cfg experiments/coco/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_coco_x140.yaml \
    TEST.MODEL_FILE models/pose_coco/pose_dekr_hrnetw32_coco.pth \ 
    TEST.NMS_THRE 0.15 \
    TEST.SCALE_FACTOR 0.5,1,2

Testing on COCO val2017 dataset with matching regression results to the closest keypoints detected from the keypoint heatmaps

python tools/valid.py \
    --cfg experiments/coco/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_coco_x140.yaml \
    TEST.MODEL_FILE models/pose_coco/pose_dekr_hrnetw32_coco.pth \ 
    TEST.MATCH_HMP True

Testing on crowdpose test dataset without multi-scale test using well-trained pose model

python tools/valid.py \
    --cfg experiments/crowdpose/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_crowdpose_x300.yaml \
    TEST.MODEL_FILE models/pose_crowdpose/pose_dekr_hrnetw32_crowdpose.pth

Testing on crowdpose test dataset with multi-scale test using well-trained pose model

python tools/valid.py \
    --cfg experiments/crowdpose/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_crowdpose_x300.yaml \
    TEST.MODEL_FILE models/pose_crowdpose/pose_dekr_hrnetw32_crowdpose.pth \ 
    TEST.NMS_THRE 0.15 \
    TEST.SCALE_FACTOR 0.5,1,2

Testing on crowdpose test dataset with matching regression results to the closest keypoints detected from the keypoint heatmaps

python tools/valid.py \
    --cfg experiments/crowdpose/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_crowdpose_x300.yaml \
    TEST.MODEL_FILE models/pose_crowdpose/pose_dekr_hrnetw32_crowdpose.pth \ 
    TEST.MATCH_HMP True

Training on COCO train2017 dataset

python tools/train.py \
    --cfg experiments/coco/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_coco_x140.yaml \

Training on Crowdpose trainval dataset

python tools/train.py \
    --cfg experiments/crowdpose/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_crowdpose_x300.yaml \

Using inference demo

python tools/inference_demo.py --cfg experiments/coco/inference_demo_coco.yaml \
    --videoFile ../multi_people.mp4 \
    --outputDir output \
    --visthre 0.3 \
    TEST.MODEL_FILE model/pose_coco/pose_dekr_hrnetw32.pth
python tools/inference_demo.py --cfg experiments/crowdpose/inference_demo_crowdpose.yaml \
    --videoFile ../multi_people.mp4 \
    --outputDir output \
    --visthre 0.3 \
    TEST.MODEL_FILE model/pose_crowdpose/pose_dekr_hrnetw32.pth \

The above command will create a video under output directory and a lot of pose image under output/pose directory.

Scoring net

We use a scoring net, consisting of two fully-connected layers (each followed by a ReLU layer), and a linear prediction layer which aims to learn the OKS score for the corresponding predicted pose. For this scoring net, you can directly use our well-trained model in the model/rescore folder. You can also train your scoring net using your pose estimation model by the following steps:

  1. Generate scoring dataset on train dataset:
python tools/valid.py \
    --cfg experiments/coco/rescore_coco.yaml \
    TEST.MODEL_FILE model/pose_coco/pose_dekr_hrnetw32.pth
python tools/valid.py \
    --cfg experiments/crowdpose/rescore_crowdpose.yaml \
    TEST.MODEL_FILE model/pose_crowdpose/pose_dekr_hrnetw32.pth \
  1. Train the scoring net using the scoring dataset:
python tools/train_scorenet.py \
    --cfg experiment/coco/rescore_coco.yaml
python tools/train_scorenet.py \
    --cfg experiments/crowdpose/rescore_crowdpose.yaml \
  1. Using the well-trained scoring net to improve the performance of your pose estimation model (above 0.6AP).
python tools/valid.py \
    --cfg experiments/coco/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_coco_x140.yaml \
    TEST.MODEL_FILE models/pose_coco/pose_dekr_hrnetw32_coco.pth
python tools/valid.py \
    --cfg experiments/crowdpose/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_crowdpose_x300.yaml \
    TEST.MODEL_FILE models/pose_crowdpose/pose_dekr_hrnetw32_crowdpose.pth \

Acknowledge

Our code is mainly based on HigherHRNet.

Citation

@inproceedings{GengSXZW21,
  title={Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression},
  author={Zigang Geng, Ke Sun, Bin Xiao, Zhaoxiang Zhang, Jingdong Wang},
  booktitle={CVPR},
  year={2021}
}

@inproceedings{SunXLW19,
  title={Deep High-Resolution Representation Learning for Human Pose Estimation},
  author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
  booktitle={CVPR},
  year={2019}
}

@article{WangSCJDZLMTWLX19,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Jingdong Wang and Ke Sun and Tianheng Cheng and 
          Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and 
          Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
  journal={TPAMI}
  year={2019}
}
Owner
HRNet
Code for pose estimation is available at https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
HRNet
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
Demo for Real-time RGBD-based Extended Body Pose Estimation paper

Real-time RGBD-based Extended Body Pose Estimation This repository is a real-time demo for our paper that was published at WACV 2021 conference The ou

Renat Bashirov 118 Dec 26, 2022
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques

Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques This repository is derived from the NMTGMinor

Tu Anh Dinh 1 Sep 07, 2022
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
A "gym" style toolkit for building lightweight Neural Architecture Search systems

A "gym" style toolkit for building lightweight Neural Architecture Search systems

Jack Turner 12 Nov 05, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly

The Laboratory for Robust and Efficient Machine Learning 68 Dec 17, 2022
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
Experiments with the Robust Binary Interval Search (RBIS) algorithm, a Query-Based prediction algorithm for the Online Search problem.

OnlineSearchRBIS Online Search with Best-Price and Query-Based Predictions This is the implementation of the Robust Binary Interval Search (RBIS) algo

S. K. 1 Apr 16, 2022