A "gym" style toolkit for building lightweight Neural Architecture Search systems

Overview

gymnastics

License CI status Code analysis

A "gym" style toolkit for building lightweight Neural Architecture Search systems. I know, the name is awful.

Installation

Preferred option: Install from source:

git clone [email protected]:jack-willturner/gymnastics.git
cd gymnastics
python setup.py install

To install the latest release version:

pip install gymnastics

If you want to use NAS-Bench-101, follow the instructions here to get it set up.

Overview

Over the course of the final year of my PhD I worked a lot on Neural Architecture Search (NAS) and built a bunch of tooling to make my life easier. This is an effort to standardise the various features into a single framework and provide a "gym" style toolkit for comparing various algorithms.

The key use cases for this library are:

  • test out new predictors on various NAS benchmarks
  • visualise the cells/graphs of your architectures
  • add new operations to NAS spaces
  • add new backbones to NAS spaces

The framework revolves around three key classes:

  1. Model
  2. Proxy
  3. SearchSpace

The anatomy of NAS

We can break down NAS spaces into three separate components: the skeleton or backbone of the network, the possible cells that can fill the skeletons, and the possible operations that can fill the cells. NAS papers and benchmarks all define their own versions of each of these variables. Our goal here is to de-couple the "search strategy" from the "search space" by allowing NAS designers to test out their technique on many NAS search spaces very easily. Specifically, the goal is the provide an easy interface for defining each column of the picture above.

Obligatory builder pattern README example

Using gymnastics we can very easily reconstruct NAS spaces (the goal being that it's easy to define new and exciting ones).

For example, here's how easy it is to redefine the NATS-Bench / NAS-Bench-201 search space:

best_score: best_score = score best_model = model best_model.show_picture() ">
from gymnastics.searchspace import SearchSpace, CellSpace, Skeleton
from gymnastics.searchspace.ops import Conv3x3, Conv1x1, AvgPool2d, Skip, Zeroize

search_space = SearchSpace(
    CellSpace(
        ops=[Conv3x3, Conv1x1, AvgPool2d, Skip, Zeroize], num_nodes=4, num_edges=6
    ),
    Skeleton(
        style=ResNetCIFAR,
        num_blocks=[5, 5, 5],
        channels_per_stage=[16, 32, 64],
        strides_per_stage=[1, 2, 2],
        block_expansion=1
    ),
)


# create an accuracy predictor
from gymnastics.proxies import NASWOT
from gymnastics.datasets import CIFAR10Loader

proxy = NASWOT()
dataset = CIFAR10Loader(path="~/datasets/cifar10", download=False)

minibatch, _ = dataset.sample_minibatch()

best_score = 0.0
best_model = None

# try out 10 random architectures and save the best one
for i in range(10):

    model = search_space.sample_random_architecture()

    y = model(minibatch)

    score = proxy.score(model, minibatch)

    if score > best_score:
        best_score = score
        best_model = model

best_model.show_picture()

Which prints:

Have a look in examples/ for more examples.

NAS-Benchmarks

If you have designed a new proxy for accuracy and want to test its performance, you can use the benchmarks available in benchmarks/.

The interface to the benchmarks is exactly the same as the above example for SearchSpace.

For example, here we score networks from the NDS ResNet space using random input data:

import torch
from gymnastics.benchmarks import NDSSearchSpace
from gymnastics.proxies import Proxy, NASWOT

search_space = NDSSearchSpace(
    "~/nds/data/ResNet.json", searchspace="ResNet"
)

proxy: Proxy = NASWOT()
minibatch: torch.Tensor = torch.rand((10, 3, 32, 32))

scores = []

for _ in range(10):
    model = search_space.sample_random_architecture()
    scores.append(proxy.score(model, minibatch))

Additional supported operations

In addition to the standard NAS operations we include a few more exotic ones, all in various states of completion:

Op Paper Notes
conv - params: kernel size
gconv - + params: group
depthwise separable pdf + no extra params needed
mixconv pdf + params: needs a list of kernel_sizes
octaveconv pdf Don't have a sensible way to include this as a single operation yet
shift pdf no params needed
ViT pdf
Fused-MBConv pdf
Lambda pdf

Repositories that use this framework

Alternatives

If you are looking for alternatives to this library, there are a few which I will try to keep a list of here:

Owner
Jack Turner
Jack Turner
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
A simple Neural Network that predicts the label for a series of handwritten digits

Neural_Network A simple Neural Network that predicts the label for a series of handwritten numbers This program tries to predict the label (1,2,3 etc.

Ty 1 Dec 18, 2021
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Philipp Erler 329 Jan 06, 2023
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022