Accurate identification of bacteriophages from metagenomic data using Transformer

Related tags

Deep LearningPhaMer
Overview

PhaMer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocabulary to convert DNA sequences into sentences.

Overview

The main function of PhaMer is to identify phage-like contigs from metagenomic data. The input of the program should be fasta files and the output will be a csv file showing the predictions. Since it is a Deep learning model, if you have GPU units on your PC, we recommand you to use them to save your time.

If you have any trouble installing or using PhaMer, please let us know by opening an issue on GitHub or emailing us ([email protected]).

Required Dependencies

If you want to use the gpu to accelerate the program:

  • cuda

  • Pytorch-gpu

  • For cpu version pytorch: conda install pytorch torchvision torchaudio cpuonly -c pytorch

  • For gpu version pytorch: Search pytorch to find the correct cuda version according to your computer

An easiler way to install

Note: we suggest you to install all the package using conda (both miniconda and Anaconda are ok).

After cloning this respository, you can use anaconda to install the PhaMer.yaml. This will install all packages you need with gpu mode (make sure you have installed cuda on your system to use the gpu version. Othervise, it will run with cpu version). The command is: conda env create -f PhaMer.yaml -n phamer

Prepare the database and environment

Due to the limited size of the GitHub, we zip the database. Before using PhaMer, you need to unpack them using the following commands.

  1. When you use PhaMer at the first time
cd PhaMer/
conda env create -f PhaMer.yaml -n phamer
conda activate phamer
cd database/
bzip2 -d database.fa.bz2
git lfs install
rm transformer.pth
git checkout .
cd ..

Note: Because the parameter is larger than 100M, please make sure you have installed git-lfs to downloaded it from GitHub

  1. If the example can be run without any but bugs, you only need to activate your 'phamer' environment before using PhaMer.
conda activate phamer

Usage

python preprocessing.py [--contigs INPUT_FA] [--len MINIMUM_LEN]
python PhaMer.py [--out OUTPUT_CSV] [--reject THRESHOLD]

Options

  --contigs INPUT_FA
                        input fasta file
  --len MINIMUM_LEN
                        predict only for sequence >= len bp (default 3000)
  --out OUTPUT_CSV
                        The output csv file (prediction)
  --reject THRESHOLD
                        Threshold to reject prophage. The higher the value, the more prophage will be rejected (default 0.3)

Example

Prediction on the example file:

python preprocessing.py --contigs test_contigs.fa
python PhaMer.py --out example_prediction.csv

The prediction will be written in example_prediction.csv. The CSV file has three columns: contigs names, prediction, and prediction score.

References

The paper is submitted to the ISMB 2022.

The arXiv version can be found via: Accurate identification of bacteriophages from metagenomic data using Transformer

Contact

If you have any questions, please email us: [email protected]

Comments
  • issues collections from schackartk (solved)

    issues collections from schackartk (solved)

    Hi! Thank you for publishing your code publicly.

    I am a researcher who works with many tools that identify phage in metagenomes. However, I like to be confident in the implementation of the concepts. I noticed that your repository does not have any formal testing. Without tests, I am always skeptical about implementing a tool in my own work because I cannot be sure it is working as described.

    Would your team be interested in adding tests to the code (e.g. using pytest)? If I, or another developer, were to create a pull request that implemented testing, would your team consider accepting such a request?

    Also, it is a small thing, but I noticed that your code is not formatted in any community-accepted way. Would you consider accepting a pull request that has passed the code through a linter such as yapf or black? I usually add linting as part of my test suites.

    opened by schackartk 12
  • Rename preprocessing.py?

    Rename preprocessing.py?

    Hi Kenneth,

    preprocessing.py is a pretty generic name; maybe rename the script to PhaMer_preprocess.py to avoid potential future conflicts with other software?

    opened by sjaenick 1
  • bioconda recipe

    bioconda recipe

    Any plans on creating a bioconda recipe for PhaMer? That would greatly help users with the install & version management of PhaMer.

    Also in regards to:

    Because the parameter is larger than 100M, please make sure you have downloaded transformer.pth correctly.

    Why not just use md5sum?

    opened by nick-youngblut 1
  • Threading/Performance updates

    Threading/Performance updates

    Hi,

    • introduce ---threads to control threading behavior
    • allow to supply external database directory, so DIAMOND database formatting isn't needed every time
    • use 'pprodigal' for faster gene prediction step
    • removed unused imports

    Please note I didn't yet add pprodigal to the conda yaml - feel free to do so if you want to include it

    opened by sjaenick 1
  • Bug: Unable to clone repository

    Bug: Unable to clone repository

    Hello,

    It seems that this repository is exceeding its data transfer limits. I believe you are aware of this, as you instruct users to download the transformer.pth from Google Drive.

    However, it seems that I cannot clone the repository in general. I just want to make sure this is not a problem on my end, so I will walk through what I am doing.

    Reproducible Example

    First, cloning the repository

    $ git clone [email protected]:KennthShang/PhaMer.git
    Cloning into 'PhaMer'...
    Downloading database/transformer.pth (143 MB)
    Error downloading object: database/transformer.pth (28a82c1): Smudge error: Error downloading database/transformer.pth (28a82c1ca0fb2499c0071c685dbf49f3a0d060fdc231bb04f7535e88e7fe0858): batch response: This repository is over its data quota. Account responsible for LFS bandwidth should purchase more data packs to restore access.
    
    Errors logged to /xdisk/bhurwitz/mig2020/rsgrps/bhurwitz/schackartk/projects/PhaMer/.git/lfs/logs/20220124T113548.16324098.log
    Use `git lfs logs last` to view the log.
    error: external filter git-lfs smudge -- %f failed 2
    error: external filter git-lfs smudge -- %f failed
    fatal: database/transformer.pth: smudge filter lfs failed
    warning: Clone succeeded, but checkout failed.
    You can inspect what was checked out with 'git status'
    and retry the checkout with 'git checkout -f HEAD'
    

    Checking git status as suggested indicates that several files were not checked out

    $ cd PhaMer/
    $ git status
    # On branch main
    # Changes to be committed:
    #   (use "git reset HEAD <file>..." to unstage)
    #
    #	deleted:    .gitattributes
    #	deleted:    LICENSE.txt
    #	deleted:    PhaMer.py
    #	deleted:    PhaMer.yaml
    #	deleted:    README.md
    #	deleted:    database/.DS_Store
    #	deleted:    database/contigs.csv
    #	deleted:    database/database.fa.bz2
    #	deleted:    database/pc2wordsid.dict
    #	deleted:    database/pcs.csv
    #	deleted:    database/profiles.csv
    #	deleted:    database/proteins.csv
    #	deleted:    database/transformer.pth
    #	deleted:    logo.jpg
    #	deleted:    model.py
    #	deleted:    preprocessing.py
    #	deleted:    test_contigs.fa
    #
    # Untracked files:
    #   (use "git add <file>..." to include in what will be committed)
    #
    #	.gitattributes
    #	LICENSE.txt
    #	PhaMer.py
    #	PhaMer.yaml
    #	README.md
    #	database/
    

    To confirm that several files are missing, such as preprocessing.py.

    $ ls
    database  LICENSE.txt  PhaMer.py  PhaMer.yaml  README.md
    

    Continuing with installation instructions anyway in case they resolve these issues.

    $ conda env create -f PhaMer.yaml -n phamer
    Collecting package metadata (repodata.json): done
    Solving environment: done
    Preparing transaction: done
    Verifying transaction: done
    Executing transaction: \ By downloading and using the CUDA Toolkit conda packages, you accept the terms and conditions of the CUDA End User License Agreement (EULA): https://docs.nvidia.com/cuda/eula/index.html
    
    done
    Installing pip dependencies: / Ran pip subprocess with arguments:
    ['/home/u29/schackartk/.conda/envs/phamer/bin/python', '-m', 'pip', 'install', '-U', '-r', '/xdisk/bhurwitz/mig2020/rsgrps/bhurwitz/schackartk/projects/PhaMer/condaenv.1nhq2jy1.requirements.txt']
    Pip subprocess output:
    Collecting joblib==1.1.0
      Using cached joblib-1.1.0-py2.py3-none-any.whl (306 kB)
    Collecting scikit-learn==1.0.1
      Using cached scikit_learn-1.0.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (25.9 MB)
    Collecting sklearn==0.0
      Using cached sklearn-0.0-py2.py3-none-any.whl
    Collecting threadpoolctl==3.0.0
      Using cached threadpoolctl-3.0.0-py3-none-any.whl (14 kB)
    Requirement already satisfied: scipy>=1.1.0 in /home/u29/schackartk/.conda/envs/phamer/lib/python3.8/site-packages (from scikit-learn==1.0.1->-r /xdisk/bhurwitz/mig2020/rsgrps/bhurwitz/schackartk/projects/PhaMer/condaenv.1nhq2jy1.requirements.txt (line 2)) (1.7.1)
    Requirement already satisfied: numpy>=1.14.6 in /home/u29/schackartk/.conda/envs/phamer/lib/python3.8/site-packages (from scikit-learn==1.0.1->-r /xdisk/bhurwitz/mig2020/rsgrps/bhurwitz/schackartk/projects/PhaMer/condaenv.1nhq2jy1.requirements.txt (line 2)) (1.21.2)
    Installing collected packages: threadpoolctl, joblib, scikit-learn, sklearn
    Successfully installed joblib-1.1.0 scikit-learn-1.0.1 sklearn-0.0 threadpoolctl-3.0.0
    
    done
    #
    # To activate this environment, use
    #
    #     $ conda activate phamer
    #
    # To deactivate an active environment, use
    #
    #     $ conda deactivate
    

    Activating the conda environment and attempting to get transformer.pth

    $ conda activate phamer
    $ cd database
    $ bzip2 -d database.fa.bz2
    $ git lfs install
    Updated git hooks.
    Git LFS initialized.
    $ rm transformer.pth
    rm: cannot remove ‘transformer.pth’: No such file or directory
    $ git checkout .
    error: pathspec './' did not match any file(s) known to git.
    
    $ ls
    contigs.csv  database.fa  pc2wordsid.dict  pcs.csv  profiles.csv  proteins.csv
    

    Since the file doesn't seem to exist, I followed your Google Drive link and pasted into database/ manually.

    $ ls
    contigs.csv  database.fa  pc2wordsid.dict  pcs.csv  profiles.csv  proteins.csv  transformer.pth
    

    I will try checking out again.

    $ git checkout .
    error: pathspec './' did not match any file(s) known to git.
    

    Going back up, you can see that I am still missing scripts.

    $ cd ..
    $ ls
    metaphinder_reprex  phage_finders  PhaMer  snakemake_tutorial
    

    Conclusions

    I am missing the scripts and cannot run the tool. I believe this all comes down to the repo exceedingits data transfer limits. This is probably due to you storing the large database files in the repository.

    Possible solution?

    Going forward, maybe entirely remove the large files from the repo so that you don't exceed limits. I am not sure what I can do at this moment since the limits are already exceeded.

    Also, it would be helpful if I could obtain the transformer.pth from the command line (e.g. using wget) since I, and many researchers, are working on an HPC or cloud.

    Thank you, -Ken

    opened by schackartk 1
Releases(v1.0)
Owner
Kenneth Shang
Kenneth Shang
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
An adaptive hierarchical energy management strategy for hybrid electric vehicles

An adaptive hierarchical energy management strategy This project contains the source code of an adaptive hierarchical EMS combining heuristic equivale

19 Dec 13, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Jan 04, 2023
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021