Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Overview

Semantic-NeRF: Semantic Neural Radiance Fields

Project Page | Video | Paper | Data

In-Place Scene Labelling and Understanding with Implicit Scene Representation
Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, Andrew J. Davison,
Dyson Robotics Laboratory at Imperial College
Published in ICCV 2021 (Oral Presentation)

We build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF.

Getting Started

For flawless reproduction of our results, the Ubuntu OS 20.04 is recommended. The models have been tested using Python 3.7, Pytorch 1.6.0, CUDA10.1. Higher versions should also perform similarly.

Dependencies

Main python dependencies are listed below:

  • Python >=3.7
  • torch>=1.6.0 (integrate searchsorted API, otherwise need to use the third party implementation SearchSorted)
  • cudatoolkit>=10.1

Following packages are used for 3D mesh reconstruction:

  • trimesh==3.9.9
  • open3d==0.12.0

With Anaconda, you can simply create a virtual environment and install dependencies with CONDA by:

  • conda create -n semantic_nerf python=3.7
  • conda activate semantic_nerf
  • pip install -r requirements.txt

Datasets

We mainly use Replica and ScanNet datasets for experiments, where we train a new Semantic-NeRF model on each 3D scene. Other similar indoor datasets with colour images, semantic labels and poses can also be used.

We also provide pre-rendered Replica data that can be directly used by Semantic-NeRF.

Running code

After cloning the codes, we can start to run Semantic-NeRF in the root directory of the repository.

Semantic-NeRF training

For standard Semantic-NeRF training with full dense semantic supervision. You can simply run following command with a chosen config file specifying data directory and hyper-params.

python3 train_SSR_main.py --config_file /SSR/configs/SSR_room0_config.yaml

Different working modes and set-ups can be chosen via commands:

Semantic View Synthesis with Sparse Labels:

python3 train_SSR_main.py --sparse_views --sparse_ratio 0.6

Sparse ratio here is the portion of dropped frames in the training sequence.

Pixel-wise Denoising Task:

python3 train_SSR_main.py --pixel_denoising --pixel_noise_ratio 0.5

We could also use a sparse set of frames along with denoising task:

python3 train_SSR_main.py --pixel_denoising --pixel_noise_ratio 0.5 --sparse_views --sparse_ratio 0.6

Region-wise Denoising task (For Replica Room2):

python3 train_SSR_main.py --region_denoising --region_noise_ratio 0.3

The argument uniform_flip corresponds to the two modes of "Even/Sort"in region-wise denoising task.

Super-Resolution Task:

For super-resolution with dense labels, please run

python3 train_SSR_main.py --super_resolution --sr_factor 8 --dense_sr

For super-resolution with sparse labels, please run

python3 train_SSR_main.py --super_resolution --sr_factor 8

Label Propagation Task:

For label propagation task with single-click seed regions, please run

python3 train_SSR_main.py --label_propagation --partial_perc 0

In order to improve reproducibility, for denoising and label-propagation tasks, we can also include --visualise_save and --load_saved to save/load randomly generated labels.

3D Reconstruction of Replica Scenes

We also provide codes for extracting 3D semantic mesh from a trained Seamntic-NeRF model.

python3 SSR/extract_colour_mesh.py --sem --mesh_dir PATH_TO_MESH --mesh_dir PATH_TO_MESH  --training_data_dir PATH_TO_TRAINING_DATA --save_dir PATH_TO_SAVE_DIR

For more demos and qualitative results, please check our project page and video.

Acknowledgements

Thanks nerf, nerf-pytorch and nerf_pl for providing nice and inspiring implementations of NeRF.

Citation

If you found this code/work to be useful in your own research, please consider citing the following:

@inproceedings{Zhi:etal:ICCV2021,
  title={In-Place Scene Labelling and Understanding with Implicit Scene Representation},
  author={Shuaifeng Zhi and Tristan Laidlow and Stefan Leutenegger and Andrew J. Davison},
  booktitle=ICCV,
  year={2021}
}

Contact

If you have any questions, please contact [email protected] or [email protected].

Owner
Shuaifeng Zhi
PhD student in Dyson Robotics Laboratory at Imperial College London
Shuaifeng Zhi
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
Code for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelines with Query Variation Generators"

Query Variation Generators This repository contains the code and annotation data for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelin

Gustavo Penha 12 Nov 20, 2022
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

Magic tool for managing internet connection in local network by @zalexdev

Megacut ✂️ A new powerful Python3 tool for managing internet on a local network Installation git clone https://github.com/stryker-project/megacut cd m

Stryker 12 Dec 15, 2022
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
Localization Distillation for Object Detection

Localization Distillation for Object Detection This repo is based on mmDetection. This is the code for our paper: Localization Distillation

274 Dec 26, 2022
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization Official PyTorch implementation of the Fishr regularization for out-of-dist

62 Dec 22, 2022
Pytorch implementation of "ARM: Any-Time Super-Resolution Method"

ARM-Net Dependencies Python 3.6 Pytorch 1.7 Results Train Data preprocessing cd data_scripts python extract_subimages_test.py python data_augmentation

Bohong Chen 55 Nov 24, 2022
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 0 Dec 15, 2022