Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

Related tags

Deep Learninggapmm2
Overview

Latest Github release Conda

gapmm2: gapped alignment using minimap2

This tool is a wrapper for minimap2 to run spliced/gapped alignment, ie aligning transcripts to a genome. You are probably saying, yes minimap2 runs this with -x splice --cs option (you are correct). However, there are instances where the terminal exons from stock minimap2 alignments are missing. This tool detects those alignments that have unaligned terminal eons and uses edlib to find the terminal exon positions. The tool then updates the PAF output file with the updated information.

Rationale

We can pull out a gene model in GFF3 format that has a short 5' terminal exon:

scaffold_9	funannotate	gene	408904	409621	.	-	.	ID=OPO1_006919;
scaffold_9	funannotate	mRNA	408904	409621	.	-	.	ID=OPO1_006919-T1;Parent=OPO1_006919;product=hypothetical protein;
scaffold_9	funannotate	exon	409609	409621	.	-	.	ID=OPO1_006919-T1.exon1;Parent=OPO1_006919-T1;
scaffold_9	funannotate	exon	409320	409554	.	-	.	ID=OPO1_006919-T1.exon2;Parent=OPO1_006919-T1;
scaffold_9	funannotate	exon	409090	409255	.	-	.	ID=OPO1_006919-T1.exon3;Parent=OPO1_006919-T1;
scaffold_9	funannotate	exon	408904	409032	.	-	.	ID=OPO1_006919-T1.exon4;Parent=OPO1_006919-T1;
scaffold_9	funannotate	CDS	409609	409621	.	-	0	ID=OPO1_006919-T1.cds;Parent=OPO1_006919-T1;
scaffold_9	funannotate	CDS	409320	409554	.	-	2	ID=OPO1_006919-T1.cds;Parent=OPO1_006919-T1;
scaffold_9	funannotate	CDS	409090	409255	.	-	1	ID=OPO1_006919-T1.cds;Parent=OPO1_006919-T1;
scaffold_9	funannotate	CDS	408904	409032	.	-	0	ID=OPO1_006919-T1.cds;Parent=OPO1_006919-T1;

If we then map this transcript against the genome, we get the following PAF alignment.

$ minimap2 -x splice --cs genome.fasta cds-transcripts.fa | grep 'OPO1_006919'
OPO1_006919-T1	543	13	543	-	scaffold_9	658044	408903	409554	530	530	60	NM:i:0	ms:i:530	AS:i:466	nn:i:0	ts:A:+	tp:A:P	cm:i:167	s1:i:510	s2:i:0	de:f:0	rl:i:0	cs:Z::129~ct57ac:166~ct64ac:235

The --cs flag in minimap2 can be used to parse the coordinates (below) and you can see we are missing the 5' exon.

>>> cs2coords(408903, 13, 543, '-', ':129~ct57ac:166~ct64ac:235')
([(409320, 409554), (409090, 409255), (408904, 409032)],

So if we run this same alignment with gapmm2 we are able to properly align the 5' terminal exon.

$ gapmm2 genome.fa cds-transcripts.fa | grep 'OPO1_006919'
OPO1_006919-T1	543	0	543	-	scaffold_9	658044	408903	409621	543	543	60	tp:A:P	ts:A:+	NM:i:0	cs:Z::129~ct57ac:166~ct64ac:235~ct54ac:13
>>> cs2coords(408903, 0, 543, '-', ':129~ct57ac:166~ct64ac:235~ct54ac:13')
([(409609, 409621), (409320, 409554), (409090, 409255), (408904, 409032)]

Usage:

gapmm2 can be run as a command line script:

$ gapmm2
usage: gapmm2 [-o] [-t] [-m] [-d] [-h] [--version] reference query

gapmm2: gapped alignment with minimap2. Performs minimap2/mappy alignment with splice options and refines terminal alignments with edlib. Output is PAF format.

Positional arguments:
  reference         reference genome (FASTA)
  query             transcipts in FASTA or FASTQ

Optional arguments:
  -o , --out        output in PAF format (default: stdout)
  -t , --threads    number of threads to use with minimap2 (default: 3)
  -m , --min-mapq   minimum map quality value (default: 1)
  -d, --debug       write some debug info to stderr (default: False)

Help:
  -h, --help        Show this help message and exit
  --version         Show program's version number and exit

It can also be run as a python module. The splice_aligner function will return a list of lists containing PAF formatted data for each alignment and a dictionary of simple stats.

>>> from gapmm2.align import splice_aligner
>>> results, stats = splice_aligner('genome.fa', 'transcripts.fa')
>>> stats
{'n': 6926, 'low-mapq': 0, 'refine-left': 409, 'refine-right': 63}
>>> len(results)
6926
>>> results[0]
['OPO1_000001-T1', 2184, 0, 2184, '+', 'scaffold_1', 1803704, 887, 3127, 2184, 2184, 60, 'tp:A:P', 'ts:A:+', 'NM:i:0', 'cs:Z::958~gt56ag:1226']
>>> 

To install the python package, you can do this with pip:

python -m pip install gapmm2

To install the most updated code in master you can run:

python -m pip install git+https://github.com/nextgenusfs/gapmm2.git
You might also like...
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Pytorch implementation for
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Releases(v0.2.0)
Owner
Jon Palmer
Jon Palmer
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

3 Feb 25, 2022
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Phil Wang 113 Jan 05, 2023
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022