Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

Related tags

Deep Learninggapmm2
Overview

Latest Github release Conda

gapmm2: gapped alignment using minimap2

This tool is a wrapper for minimap2 to run spliced/gapped alignment, ie aligning transcripts to a genome. You are probably saying, yes minimap2 runs this with -x splice --cs option (you are correct). However, there are instances where the terminal exons from stock minimap2 alignments are missing. This tool detects those alignments that have unaligned terminal eons and uses edlib to find the terminal exon positions. The tool then updates the PAF output file with the updated information.

Rationale

We can pull out a gene model in GFF3 format that has a short 5' terminal exon:

scaffold_9	funannotate	gene	408904	409621	.	-	.	ID=OPO1_006919;
scaffold_9	funannotate	mRNA	408904	409621	.	-	.	ID=OPO1_006919-T1;Parent=OPO1_006919;product=hypothetical protein;
scaffold_9	funannotate	exon	409609	409621	.	-	.	ID=OPO1_006919-T1.exon1;Parent=OPO1_006919-T1;
scaffold_9	funannotate	exon	409320	409554	.	-	.	ID=OPO1_006919-T1.exon2;Parent=OPO1_006919-T1;
scaffold_9	funannotate	exon	409090	409255	.	-	.	ID=OPO1_006919-T1.exon3;Parent=OPO1_006919-T1;
scaffold_9	funannotate	exon	408904	409032	.	-	.	ID=OPO1_006919-T1.exon4;Parent=OPO1_006919-T1;
scaffold_9	funannotate	CDS	409609	409621	.	-	0	ID=OPO1_006919-T1.cds;Parent=OPO1_006919-T1;
scaffold_9	funannotate	CDS	409320	409554	.	-	2	ID=OPO1_006919-T1.cds;Parent=OPO1_006919-T1;
scaffold_9	funannotate	CDS	409090	409255	.	-	1	ID=OPO1_006919-T1.cds;Parent=OPO1_006919-T1;
scaffold_9	funannotate	CDS	408904	409032	.	-	0	ID=OPO1_006919-T1.cds;Parent=OPO1_006919-T1;

If we then map this transcript against the genome, we get the following PAF alignment.

$ minimap2 -x splice --cs genome.fasta cds-transcripts.fa | grep 'OPO1_006919'
OPO1_006919-T1	543	13	543	-	scaffold_9	658044	408903	409554	530	530	60	NM:i:0	ms:i:530	AS:i:466	nn:i:0	ts:A:+	tp:A:P	cm:i:167	s1:i:510	s2:i:0	de:f:0	rl:i:0	cs:Z::129~ct57ac:166~ct64ac:235

The --cs flag in minimap2 can be used to parse the coordinates (below) and you can see we are missing the 5' exon.

>>> cs2coords(408903, 13, 543, '-', ':129~ct57ac:166~ct64ac:235')
([(409320, 409554), (409090, 409255), (408904, 409032)],

So if we run this same alignment with gapmm2 we are able to properly align the 5' terminal exon.

$ gapmm2 genome.fa cds-transcripts.fa | grep 'OPO1_006919'
OPO1_006919-T1	543	0	543	-	scaffold_9	658044	408903	409621	543	543	60	tp:A:P	ts:A:+	NM:i:0	cs:Z::129~ct57ac:166~ct64ac:235~ct54ac:13
>>> cs2coords(408903, 0, 543, '-', ':129~ct57ac:166~ct64ac:235~ct54ac:13')
([(409609, 409621), (409320, 409554), (409090, 409255), (408904, 409032)]

Usage:

gapmm2 can be run as a command line script:

$ gapmm2
usage: gapmm2 [-o] [-t] [-m] [-d] [-h] [--version] reference query

gapmm2: gapped alignment with minimap2. Performs minimap2/mappy alignment with splice options and refines terminal alignments with edlib. Output is PAF format.

Positional arguments:
  reference         reference genome (FASTA)
  query             transcipts in FASTA or FASTQ

Optional arguments:
  -o , --out        output in PAF format (default: stdout)
  -t , --threads    number of threads to use with minimap2 (default: 3)
  -m , --min-mapq   minimum map quality value (default: 1)
  -d, --debug       write some debug info to stderr (default: False)

Help:
  -h, --help        Show this help message and exit
  --version         Show program's version number and exit

It can also be run as a python module. The splice_aligner function will return a list of lists containing PAF formatted data for each alignment and a dictionary of simple stats.

>>> from gapmm2.align import splice_aligner
>>> results, stats = splice_aligner('genome.fa', 'transcripts.fa')
>>> stats
{'n': 6926, 'low-mapq': 0, 'refine-left': 409, 'refine-right': 63}
>>> len(results)
6926
>>> results[0]
['OPO1_000001-T1', 2184, 0, 2184, '+', 'scaffold_1', 1803704, 887, 3127, 2184, 2184, 60, 'tp:A:P', 'ts:A:+', 'NM:i:0', 'cs:Z::958~gt56ag:1226']
>>> 

To install the python package, you can do this with pip:

python -m pip install gapmm2

To install the most updated code in master you can run:

python -m pip install git+https://github.com/nextgenusfs/gapmm2.git
You might also like...
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Pytorch implementation for
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Releases(v0.2.0)
Owner
Jon Palmer
Jon Palmer
Github Traffic Insights as Prometheus metrics.

github-traffic Github Traffic collects your repository's traffic data and exposes it as Prometheus metrics. Grafana dashboard that displays the metric

Grafana Labs 34 Oct 27, 2022
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Pranav B 13 Oct 14, 2022
Code for the paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Offline Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are

Michael Janner 266 Dec 27, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training fr

National Renewable Energy Laboratory 37 Dec 17, 2022
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.

Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P

Jiayi Chen 3 Mar 03, 2022
TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset

AlexNet training on ImageNet LSVRC 2012 This repository contains an implementation of AlexNet convolutional neural network and its training and testin

Matteo Dunnhofer 161 Nov 25, 2022
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
Fine-tune pretrained Convolutional Neural Networks with PyTorch

Fine-tune pretrained Convolutional Neural Networks with PyTorch. Features Gives access to the most popular CNN architectures pretrained on ImageNet. A

Alex Parinov 694 Nov 23, 2022
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022