Deep Learning pipeline for motor-imagery classification.

Overview

BCI-ToolBox

1. Introduction

BCI-ToolBox is deep learning pipeline for motor-imagery classification.
This repo contains five models: ShallowConvNet, DeepConvNet, EEGNet, FBCNet, BCI2021.
(BCI2021 is not an official name.)

2. Installation

Environment

  • Python == 3.7.10
  • PyTorch == 1.9.0
  • mne == 0.23.0
  • braindecode == 0.5.1
  • CUDA == 11.0

Create conda environment

conda install pytorch=1.9.0 cudatoolkit=11.1 -c pytorch -c nvidia
conda install numpy pandas matplotlib pyyaml ipywidgets
pip install torchinfo braindecode moabb mne

3. Directory structure

.
├── README.md
├── base
│   ├── constructor.py
│   └── layers.py
├── configs
│   ├── BCI2021
│   │   └── default.yaml
│   ├── DeepConvNet
│   │   └── default.yaml
│   ├── EEGNet
│   │   └── default.yaml
│   ├── FBCNet
│   │   └── default.yaml
│   ├── ShallowConvNet
│   │   └── default.yaml
│   └── demo
│       ├── arch.yaml
│       ├── bci2021.yaml
│       ├── test.yaml
│       ├── train.yaml
│       └── training_params.yaml
├── data_loader
│   ├── data_generator.py
│   ├── datasets
│   │   ├── __init__.py
│   │   ├── bnci2014.py
│   │   ├── cho2017.py
│   │   ├── folder_dataset.py
│   │   ├── openbmi.py
│   │   └── tmp_dataset.py
│   └── transforms.py
├── main.py
├── models
│   ├── BCI2021
│   │   ├── BCI2021.py
│   │   └── __init__.py
│   ├── DeepConvNet
│   │   ├── DeepConvNet.py
│   │   └── __init__.py
│   ├── EEGNet
│   │   ├── EEGNet.py
│   │   └── __init__.py
│   ├── FBCNet
│   │   ├── FBCNet.py
│   │   └── __init__.py
│   ├── ShallowConvNet
│   │   ├── ShallowConvNet.py
│   │   └── __init__.py
│   ├── __init__.py
│   └── model_builder.py
├── trainers
│   ├── __init__.py
│   ├── cls_trainer.py
│   └── trainer_maker.py
└── utils
    ├── calculator.py
    ├── painter.py
    └── utils.py

4. Dataset

5. Get Started

Create wandb_key.yaml file

  • Create wandb_key.yaml file in configs directory.
    # wandb_key.yaml
    key: WANDB API keys
  • WANDB API keys can be obtained from your W&B account settings.

train

Use W&B

python main.py --config_file=configs/demo/train.yaml

Not use W&B

python main.py --config_file=configs/demo/train.yaml --no_wandb

USE GPU

python main.py --config_file=configs/demo/train.yaml --device=0  # Use GPU 0
python main.py --config_file=configs/demo/train.yaml --device=1  # Use GPU 1
python main.py --config_file=configs/demo/train.yaml --device=2  # Use GPU 2
  • GPU numbers depend on your server.

USE Sweep

# W&B
sweep_file: configs/demo/training_params.yaml
project: Demo
tags: [train]
  • Add this block to config file for finding training parameters.
# W&B
sweep_file: configs/demo/arch.yaml
sweep_type: arch
project: Demo
tags: [train]
  • Add this block to config file for finding model architecture.

test

python main.py --config_file=configs/demo/test.yaml

5. References

Owner
DongHee
Data Engineering / MLOps / AutoML
DongHee
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 168 Dec 28, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
Official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks"

Easy-To-Hard The official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks". Gett

Avi Schwarzschild 52 Sep 08, 2022
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022
Prototype-based Incremental Few-Shot Semantic Segmentation

Prototype-based Incremental Few-Shot Semantic Segmentation Fabio Cermelli, Massimiliano Mancini, Yongqin Xian, Zeynep Akata, Barbara Caputo -- BMVC 20

Fabio Cermelli 21 Dec 29, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)

Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n

8 Oct 20, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
Earthquake detection via fiber optic cables using deep learning

Earthquake detection via fiber optic cables using deep learning Author: Fantine Huot Getting started Update the submodules After cloning the repositor

Fantine 4 Nov 30, 2022
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021

NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree

35 Jan 03, 2023
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, numpy and joblib packages.

Pricefy Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, n

Siva Prakash 1 May 10, 2022
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022