Deep Learning pipeline for motor-imagery classification.

Overview

BCI-ToolBox

1. Introduction

BCI-ToolBox is deep learning pipeline for motor-imagery classification.
This repo contains five models: ShallowConvNet, DeepConvNet, EEGNet, FBCNet, BCI2021.
(BCI2021 is not an official name.)

2. Installation

Environment

  • Python == 3.7.10
  • PyTorch == 1.9.0
  • mne == 0.23.0
  • braindecode == 0.5.1
  • CUDA == 11.0

Create conda environment

conda install pytorch=1.9.0 cudatoolkit=11.1 -c pytorch -c nvidia
conda install numpy pandas matplotlib pyyaml ipywidgets
pip install torchinfo braindecode moabb mne

3. Directory structure

.
├── README.md
├── base
│   ├── constructor.py
│   └── layers.py
├── configs
│   ├── BCI2021
│   │   └── default.yaml
│   ├── DeepConvNet
│   │   └── default.yaml
│   ├── EEGNet
│   │   └── default.yaml
│   ├── FBCNet
│   │   └── default.yaml
│   ├── ShallowConvNet
│   │   └── default.yaml
│   └── demo
│       ├── arch.yaml
│       ├── bci2021.yaml
│       ├── test.yaml
│       ├── train.yaml
│       └── training_params.yaml
├── data_loader
│   ├── data_generator.py
│   ├── datasets
│   │   ├── __init__.py
│   │   ├── bnci2014.py
│   │   ├── cho2017.py
│   │   ├── folder_dataset.py
│   │   ├── openbmi.py
│   │   └── tmp_dataset.py
│   └── transforms.py
├── main.py
├── models
│   ├── BCI2021
│   │   ├── BCI2021.py
│   │   └── __init__.py
│   ├── DeepConvNet
│   │   ├── DeepConvNet.py
│   │   └── __init__.py
│   ├── EEGNet
│   │   ├── EEGNet.py
│   │   └── __init__.py
│   ├── FBCNet
│   │   ├── FBCNet.py
│   │   └── __init__.py
│   ├── ShallowConvNet
│   │   ├── ShallowConvNet.py
│   │   └── __init__.py
│   ├── __init__.py
│   └── model_builder.py
├── trainers
│   ├── __init__.py
│   ├── cls_trainer.py
│   └── trainer_maker.py
└── utils
    ├── calculator.py
    ├── painter.py
    └── utils.py

4. Dataset

5. Get Started

Create wandb_key.yaml file

  • Create wandb_key.yaml file in configs directory.
    # wandb_key.yaml
    key: WANDB API keys
  • WANDB API keys can be obtained from your W&B account settings.

train

Use W&B

python main.py --config_file=configs/demo/train.yaml

Not use W&B

python main.py --config_file=configs/demo/train.yaml --no_wandb

USE GPU

python main.py --config_file=configs/demo/train.yaml --device=0  # Use GPU 0
python main.py --config_file=configs/demo/train.yaml --device=1  # Use GPU 1
python main.py --config_file=configs/demo/train.yaml --device=2  # Use GPU 2
  • GPU numbers depend on your server.

USE Sweep

# W&B
sweep_file: configs/demo/training_params.yaml
project: Demo
tags: [train]
  • Add this block to config file for finding training parameters.
# W&B
sweep_file: configs/demo/arch.yaml
sweep_type: arch
project: Demo
tags: [train]
  • Add this block to config file for finding model architecture.

test

python main.py --config_file=configs/demo/test.yaml

5. References

Owner
DongHee
Data Engineering / MLOps / AutoML
DongHee
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

3DB 112 Jan 01, 2023
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa

Wesley Maddox 16 Dec 08, 2022
MTA:SA Server Configer.

MTAConfiger MTA:SA Server Configer. Hi 👋 , I'm Alireza A Python Developer Boy 🔭 I’m currently working on my C# projects 🌱 I’m currently Learning CS

3 Jun 07, 2022
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
As-ViT: Auto-scaling Vision Transformers without Training

As-ViT: Auto-scaling Vision Transformers without Training [PDF] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou In ICLR 2

VITA 68 Sep 05, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper

H.R. Oosterhuis 28 Nov 29, 2022
Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021

Refer-it-in-RGBD This is the repository of our paper 'Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD Images' in CVPR 2021 Pape

Haolin Liu 34 Nov 07, 2022
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex.

NuPIC Numenta Platform for Intelligent Computing The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implem

Numenta 6.3k Dec 30, 2022