A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Overview

Telemanom (v2.0)

v2.0 updates:

  • Vectorized operations via numpy
  • Object-oriented restructure, improved organization
  • Merge branches into single branch for both processing modes (with/without labels)
  • Update requirements.txt and Dockerfile
  • Updated result output for both modes
  • PEP8 cleanup

Anomaly Detection in Time Series Data Using LSTMs and Automatic Thresholding

License

Telemanom employs vanilla LSTMs using Keras/Tensorflow to identify anomalies in multivariate sensor data. LSTMs are trained to learn normal system behaviors using encoded command information and prior telemetry values. Predictions are generated at each time step and the errors in predictions represent deviations from expected behavior. Telemanom then uses a novel nonparametric, unsupervised approach for thresholding these errors and identifying anomalous sequences of errors.

This repo along with the linked data can be used to re-create the experiments in our 2018 KDD paper, "Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding", which describes the background, methodologies, and experiments in more detail. While the system was originally deployed to monitor spacecraft telemetry, it can be easily adapted to similar problems.

Getting Started

Clone the repo (only available from source currently):

git clone https://github.com/khundman/telemanom.git && cd telemanom

Configure system/modeling parameters in config.yaml file (to recreate experiment from paper, leave as is). For example:

  • train: True if True, a new model will be trained for each input stream. If False (default) existing trained model will be loaded and used to generate predictions
  • predict: True Generate new predictions using models. If False (default), use existing saved predictions in evaluation (useful for tuning error thresholding and skipping prior processing steps)
  • l_s: 250 Determines the number of previous timesteps input to the model at each timestep t (used to generate predictions)

To run via Docker:

docker build -t telemanom .

# rerun experiment detailed in paper or run with your own set of labeled anomlies in 'labeled_anomalies.csv'
docker run telemanom -l labeled_anomalies.csv

# run without labeled anomalies
docker run telemanom

To run with local or virtual environment

From root of repo, curl and unzip data:

curl -O https://s3-us-west-2.amazonaws.com/telemanom/data.zip && unzip data.zip && rm data.zip

Install dependencies using python 3.6+ (recommend using a virtualenv):

pip install -r requirements.txt

Begin processing (from root of repo):

# rerun experiment detailed in paper or run with your own set of labeled anomlies
python example.py -l labeled_anomalies.csv

# run without labeled anomalies
python example.py

A jupyter notebook for evaluating results for a run is at telemanom/result_viewer.ipynb. To launch notebook:

jupyter notebook telemanom/result-viewer.ipynb

Plotly is used to generate interactive inline plots, e.g.:

drawing2

Data

Using your own data

Pre-split training and test sets must be placed in directories named data/train/ and data/test. One .npy file should be generated for each channel or stream (for both train and test) with shape (n_timesteps, n_inputs). The filename should be a unique channel name or ID. The telemetry values being predicted in the test data must be the first feature in the input.

For example, a channel T-1 should have train/test sets named T-1.npy with shapes akin to (4900,61) and (3925, 61), where the number of input dimensions are matching (61). The actual telemetry values should be along the first dimension (4900,1) and (3925,1).

Raw experiment data

The raw data available for download represents real spacecraft telemetry data and anomalies from the Soil Moisture Active Passive satellite (SMAP) and the Curiosity Rover on Mars (MSL). All data has been anonymized with regard to time and all telemetry values are pre-scaled between (-1,1) according to the min/max in the test set. Channel IDs are also anonymized, but the first letter gives indicates the type of channel (P = power, R = radiation, etc.). Model input data also includes one-hot encoded information about commands that were sent or received by specific spacecraft modules in a given time window. No identifying information related to the timing or nature of commands is included in the data. For example:

drawing

This data also includes pre-split test and training data, pre-trained models, predictions, and smoothed errors generated using the default settings in config.yaml. When getting familiar with the repo, running the result-viewer.ipynb notebook to visualize results is useful for developing intuition. The included data also is useful for isolating portions of the system. For example, if you wish to see the effects of changes to the thresholding parameters without having to train new models, you can set Train and Predict to False in config.yaml to use previously generated predictions from prior models.

Anomaly labels and metadata

The anomaly labels and metadata are available in labeled_anomalies.csv, which includes:

  • channel id: anonymized channel id - first letter represents nature of channel (P = power, R = radiation, etc.)
  • spacecraft: spacecraft that generated telemetry stream
  • anomaly_sequences: start and end indices of true anomalies in stream
  • class: the class of anomaly (see paper for discussion)
  • num values: number of telemetry values in each stream

To provide your own labels, use the labeled_anomalies.csv file as a template. The only required fields/columns are channel_id and anomaly_sequences. anomaly_sequences is a list of lists that contain start and end indices of anomalous regions in the test dataset for a channel.

Dataset and performance statistics:

Data

SMAP MSL Total
Total anomaly sequences 69 36 105
Point anomalies (% tot.) 43 (62%) 19 (53%) 62 (59%)
Contextual anomalies (% tot.) 26 (38%) 17 (47%) 43 (41%)
Unique telemetry channels 55 27 82
Unique ISAs 28 19 47
Telemetry values evaluated 429,735 66,709 496,444

Performance (with default params specified in paper)

Spacecraft Precision Recall F_0.5 Score
SMAP 85.5% 85.5% 0.71
Curiosity (MSL) 92.6% 69.4% 0.69
Total 87.5% 80.0% 0.71

Processing

Each time the system is started a unique datetime ID (ex. 2018-05-17_16.28.00) will be used to create the following

  • a results file (in results/) that extends labeled_anomalies.csv to include identified anomalous sequences and related info
  • a data subdirectory containing data files for created models, predictions, and smoothed errors for each channel. A file called params.log is also created that contains parameter settings and logging output during processing.

As mentioned, the jupyter notebook telemanom/result-viewer.ipynb can be used to visualize results for each stream.

Citation

If you use this work, please cite:

  title={Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding},
  author={Hundman, Kyle and Constantinou, Valentino and Laporte, Christopher and Colwell, Ian and Soderstrom, Tom},
  journal={arXiv preprint arXiv:1802.04431},
  year={2018}
}

License

Telemanom is distributed under Apache 2.0 license.

Contact: Kyle Hundman ([email protected])

Contributors

Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
The original weights of some Caffe models, ported to PyTorch.

pytorch-caffe-models This repo contains the original weights of some Caffe models, ported to PyTorch. Currently there are: GoogLeNet (Going Deeper wit

Katherine Crowson 9 Nov 04, 2022
SBINN: Systems-biology informed neural network

SBINN: Systems-biology informed neural network The source code for the paper M. Daneker, Z. Zhang, G. E. Karniadakis, & L. Lu. Systems biology: Identi

Lu Group 15 Nov 19, 2022
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a

dddzg 430 Dec 23, 2022
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder

anime upscaler My usage of Real-ESRGAN to upscale anime, I hope to use this on a proper GPU cuz doing this on CPU is completely shit 😂 , I even tried

Shangar Muhunthan 29 Jan 07, 2023
Script for getting information in discord

User-info.py Script for getting information in https://discord.com/ Instalação: apt-get update -y apt-get upgrade -y apt-get install git pkg install

Moleey 1 Dec 18, 2021