Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Overview

Random Erasing Data Augmentation

===============================================================

Examples

black white random
i1 i2 i3
i4 i5 i6

This code has the source code for the paper "Random Erasing Data Augmentation".

If you find this code useful in your research, please consider citing:

@inproceedings{zhong2020random,
title={Random Erasing Data Augmentation},
author={Zhong, Zhun and Zheng, Liang and Kang, Guoliang and Li, Shaozi and Yang, Yi},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)},
year={2020}
}

Other re-implementations

[Official Torchvision in Transform]

[Pytorch: Random Erasing for ImageNet]

[Python Augmentor]

[Person_reID CamStyle]

[Person_reID_baseline + Random Erasing + Re-ranking]

[Keras re-implementation]

Installation

Requirements for Pytorch (see Pytorch installation instructions)

Examples:

CIFAR10

ResNet-20 baseline on CIFAR10: python cifar.py --dataset cifar10 --arch resnet --depth 20

ResNet-20 + Random Erasing on CIFAR10: python cifar.py --dataset cifar10 --arch resnet --depth 20 --p 0.5

CIFAR100

ResNet-20 baseline on CIFAR100: python cifar.py --dataset cifar100 --arch resnet --depth 20

ResNet-20 + Random Erasing on CIFAR100: python cifar.py --dataset cifar100 --arch resnet --depth 20 --p 0.5

Fashion-MNIST

ResNet-20 baseline on Fashion-MNIST: python fashionmnist.py --dataset fashionmnist --arch resnet --depth 20

ResNet-20 + Random Erasing on Fashion-MNIST: python fashionmnist.py --dataset fashionmnist --arch resnet --depth 20 --p 0.5

Other architectures

For ResNet: --arch resnet --depth (20, 32, 44, 56, 110)

For WRN: --arch wrn --depth 28 --widen-factor 10

Our results

You can reproduce the results in our paper:

 CIFAR10 CIFAR10 CIFAR100 CIFAR100 Fashion-MNIST Fashion-MNIST
Models  Base. +RE Base. +RE Base. +RE
ResNet-20  7.21 6.73 30.84 29.97 4.39 4.02
ResNet-32  6.41 5.66 28.50 27.18 4.16 3.80
ResNet-44  5.53 5.13 25.27 24.29 4.41 4.01
ResNet-56  5.31 4.89 24.82 23.69 4.39 4.13
ResNet-110  5.10 4.61 23.73 22.10 4.40 4.01
WRN-28-10  3.80 3.08 18.49 17.73 4.01 3.65

NOTE THAT, if you use the latest released Fashion-MNIST, the performance of Baseline and RE will slightly lower than the results reported in our paper. Please refer to the issue.

If you have any questions about this code, please do not hesitate to contact us.

Zhun Zhong

Liang Zheng

Owner
Zhun Zhong
Zhun Zhong
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
Implementation of TimeSformer, a pure attention-based solution for video classification

TimeSformer - Pytorch Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification.

Phil Wang 602 Jan 03, 2023
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Phil Wang 90 Nov 24, 2022
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
Improving Non-autoregressive Generation with Mixup Training

MIST Training MIST TRAIN_FILE=/your/path/to/train.json VALID_FILE=/your/path/to/valid.json OUTPUT_DIR=/your/path/to/save_checkpoints CACHE_DIR=/your/p

7 Nov 22, 2022
PaddlePaddle GAN library, including lots of interesting applications like First-Order motion transfer, wav2lip, picture repair, image editing, photo2cartoon, image style transfer, and so on.

English | 简体中文 PaddleGAN PaddleGAN provides developers with high-performance implementation of classic and SOTA Generative Adversarial Networks, and s

6.4k Jan 09, 2023
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022
Python Actor concurrency library

Thespian Actor Library This library provides the framework of an Actor model for use by applications implementing Actors. Thespian Site with Documenta

Kevin Quick 177 Dec 11, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Facebook Research 9k Jan 04, 2023
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022