A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Overview

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

1. 介绍

image

用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来去除重叠的 bbox。而 Confluence 则是利用曼哈顿距离作为 bbox 之间的重合度,并根据置信度加权的曼哈顿距离还作为最优 bbox 的选择依据。

2. 算法原理

2.1 曼哈顿距离

两点的曼哈顿距离就是坐标值插的 L1 范数:

image

推广到两个 bbox 对的哈曼顿距离则为:

image

该算法便是以曼哈顿距离作为两个 bbox 的重合度,曼哈顿距离小于一定值的的 bbox 则被认为是一个 cluster。

2.2 归一化

因为 bbox 有个各样的 size 和 position,所以直接计算曼哈顿距离就没有可比性,没有标准的度量。所以需要对其进行归一化:

image

2.3 置信度加权曼哈顿距离

NMS在去除重合 bbox 是仅考虑其置信度的高低,Condluence 则同时考虑了曼哈顿距离和置信度,构成一个置信度加权曼哈顿距离:

image

3. 算法实现

image

算法:

(1)针对每个类别挑出属于该类别的 bbox 集合 B

(2)遍历 B 中所有的 bbox bi,并计算 bi 和其他 boox的 曼哈顿距离 p,并归一化

2.1 选出 p < 2 的集合,作为一个 cluster,并计算加权曼哈顿距离 wp。 

2.2 在该 cluster 中挑选出最小的 wp 作为 bi 的 wp。 

(3)遍历完毕后,挑出 wp 最小的 bi 作为最优 bbox,添加进最终结果集合中,并将其从 B 去除

(4)把与最优 bbox 的曼哈顿距离小于阈值 MD 的的 bbox 从 B 中去除

(5)不断重复 (2) - (4),每次都选出一个最优 bbox,知道 B 为空

注意:

(1)原文伪代码第 5 行:optimalConfuence 初始化成一个比较大的值就可以,不一定要是 Ip

(2)原文伪代码第 12 行:应该是 Proximity / si

4. 实验结果

image

5. 代码解析

5.1 YOLOv3/4 的后处理

这个接口可以直接处理 YOLOv3/4 的 yolo 层的输出进行后处理

confluence_process(prediction, conf_thres=0.1, wp_thres=0.6)

支持多标签和单标签,并把数据重组后进行 confluence/NMS 处理

# Detections matrix nx6 (xyxy, conf, cls)
if multi_label:
    i, j = (x[:, 5:] > conf_thres).nonzero().t()
    x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
else:  # best class only
    conf, j = x[:, 5:].max(1, keepdim=True)
    x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]

5.2 Confluence 算法

confluence(prediction, class_num, wp_thres=0.6)

给所有目标添加上序号

index = np.arange(0, len(prediction), 1).reshape(-1,1)
infos = np.concatenate((prediction, index), 1)

不同类别单独处理,并遍历所有的剩余目标集合 B,直到集合为空,对应上面伪代码的(1)-(2)

for c in range(class_num):       
    pcs = infos[infos[:, 5] == c]             
    while (len(pcs)):                      
        n = len(pcs)       
        xs = pcs[:, [0, 2]]
        ys = pcs[:, [1, 3]]             
        ps = []        
        # 遍历 pcs,计算每一个box 和其余 box 的 p 值,然后聚类成簇,再根据 wp 挑出 best
        confluence_min = 10000
        best = None
        for i, pc in enumerate(pcs):

计算所有目标与其他目标的曼和顿距离 p 和加权曼哈顿距离 wp,p < 2 的目标作为一个 cluster,其中最小的 wp 作为该 cluster 的 wp

index_other = [j for j in range(n) if j!= i]
x_t = xs[i]
x_t = np.tile(x_t, (n-1, 1))
x_other = xs[index_other]
x_all = np.concatenate((x_t, x_other), 1)
.
.
.
# wp
wp = p / pc[4]
wp = wp[p < 2]

if (len(wp) == 0):
    value = 0
else:
    value = wp.min()

选出最小的 wp,确定目标

# select the bbox which has the smallest wp as the best bbox
if (value < confluence_min):
   confluence_min = value
   best = i  

然后把与目标的曼哈顿距离小于阈值的目标和本身都从集合 B 中去除

keep.append(int(pcs[best][6])) 
if (len(ps) > 0):               
    p = ps[best]
    index_ = np.where(p < wp_thres)[0]
    index_ = [i if i < best else i +1 for i in index_]
else:
    index_ = []
    
# delect the bboxes whose Manhattan Distance is below the predefined MD
index_eff = [j for j in range(n) if (j != best and j not in index_)]            
pcs = pcs[index_eff]

最后继续重复遍历集合 B,直到集合为空。

仓库里我放了一张测试照片和原始检测结果,大家可以直接用来调试 confluence 函数。

Credits:

https://arxiv.org/pdf/2012.00257.pdf

Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Nicolas 304 Dec 28, 2022
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Nick Sharp 247 Dec 28, 2022
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

QAHOI QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper) Requirements PyTorch = 1.5.1 torchvision = 0.6.1 pip install -r requ

38 Dec 29, 2022
TalkingHead-1KH is a talking-head dataset consisting of YouTube videos

TalkingHead-1KH Dataset TalkingHead-1KH is a talking-head dataset consisting of YouTube videos, originally created as a benchmark for face-vid2vid: On

173 Dec 29, 2022
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 03, 2023
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
YOLOX_AUDIO is an audio event detection model based on YOLOX

YOLOX_AUDIO is an audio event detection model based on YOLOX, an anchor-free version of YOLO. This repo is an implementated by PyTorch. Main goal of YOLOX_AUDIO is to detect and classify pre-defined

intflow Inc. 77 Dec 19, 2022
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Less Wright 266 Dec 28, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022