A curated list of programmatic weak supervision papers and resources

Overview

Awesome-Weak-Supervision Awesome

A curated list of programmatic/rule-based weak supervision papers and resources.

Contents

An overview of weak supervision

Blogs

An Overview of Weak Supervision

Building NLP Classifiers Cheaply With Transfer Learning and Weak Supervision

Videos

Theory & Systems for Weak Supervision | Chinese Version

Lecture Notes

Lecture Notes on Weak Supervision

Algorithm

Data Programming: Creating Large Training Sets, Quickly. Alex Ratner NeurIPS 2016

Socratic Learning: Augmenting Generative Models to Incorporate Latent Subsets in Training Data. Paroma Varma FILM-NeurIPS 2016

Training Complex Models with Multi-Task Weak Supervision. Alex Ratner AAAI 2019

Data Programming using Continuous and Quality-Guided Labeling Functions. Oishik Chatterjee AAAI 2020

Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods. Dan Fu ICML 2020

Learning from Rules Generalizing Labeled Exemplars. Abhijeet Awasthi ICLR 2020

Train and You'll Miss It: Interactive Model Iteration with Weak Supervision and Pre-Trained Embeddings. Mayee F. Chen 2020

Learning the Structure of Generative Models without Labeled Data. Stephen H. Bach ICML 2017

Inferring Generative Model Structure with Static Analysis. Paroma Varma NeurIPS 2017

Learning Dependency Structures for Weak Supervision Models. Paroma Varma ICML 2019

Self-Training with Weak Supervision. Giannis Karamanolakis NAACL 2021

Interactive Programmatic Labeling for Weak Supervision. Benjamin Cohen-Wang KDD Workshop 2019

Pairwise Feedback for Data Programming. Benedikt Boecking NeurIPS 2019 workshop on Learning with Rich Experience: Integration of Learning Paradigms

Interactive Weak Supervision: Learning Useful Heuristics for Data Labeling. Benedikt Boecking ICLR 2021

Active WeaSuL: Improving Weak Supervision with Active Learning. Samantha Biegel ICLR WeaSuL 2021

System

Snorkel: Rapid Training Data Creation with Weak Supervision. Alex Ratner VLDB 2018

Snorkel DryBell: A Case Study in Deploying Weak Supervision at Industrial Scale. Stephen H. Bach SIGMOD (Industrial) 2019

Snuba: Automating Weak Supervision to Label Training Data. Paroma Varma VLDB 2019

Migrating a Privacy-Safe Information Extraction System to a Software 2.0 Design. Ying Sheng CIDR 2020

Overton: A Data System for Monitoring and Improving Machine-Learned Products. Christopher Ré CIDR 2020

Ruler: Data Programming by Demonstration for Document Labeling. Sara Evensen EMNLP 2020 Findings

skweak: Weak Supervision Made Easy for NLP. Pierre Lison 2021

Application

CV

Scene Graph Prediction with Limited Labels. Vincent Chen ICCV 2019

Multi-Resolution Weak Supervision for Sequential Data. Paroma Varma NeurIPS 2019

Rekall: Specifying Video Events using Compositions of Spatiotemporal Labels. Daniel Y. Fu SOSP 2019

GOGGLES: Automatic Image Labeling with Affinity Coding. Nilaksh Das SIGMOD 2020

Cut out the annotator, keep the cutout: better segmentation with weak supervision. Sarah Hooper ICLR 2021

Task Programming: Learning Data Efficient Behavior Representations. Jennifer J. Sun CVPR 2021

NLP

Heterogeneous Supervision for Relation Extraction: A Representation Learning Approach. Liyuan Liu EMNLP 2017

Training Classifiers with Natural Language Explanations. Braden Hancock ACL 2018

Deep Text Mining of Instagram Data without Strong Supervision. Kim Hammar ICWI 2018

Bootstrapping Conversational Agents With Weak Supervision. Neil Mallinar AAAI 2019

Weakly Supervised Sequence Tagging from Noisy Rules. Esteban Safranchik AAAI 2020

NERO: A Neural Rule Grounding Framework for Label-Efficient Relation Extraction. Wenxuan Zhou WWW 2020

Named Entity Recognition without Labelled Data: A Weak Supervision Approach. Pierre Lison ACL 2020

Fine-Tuning Pre-trained Language Model with Weak Supervision: A Contrastive-Regularized Self-Training Approach. Yue Yu NAACL 2021

BERTifying Hidden Markov Models for Multi-Source Weakly Supervised Named Entity Recognition Yinghao Li ACL 2021

RL

Generating Multi-Agent Trajectories using Programmatic Weak Supervision. Eric Zhan ICLR 2019

Others

Generating Training Labels for Cardiac Phase-Contrast MRI Images. Vincent Chen MED-NeurIPS 2017

Osprey: Weak Supervision of Imbalanced Extraction Problems without Code. Eran Bringer SIGMOD DEEM Workshop 2019

Weakly Supervised Classification of Rare Aortic Valve Malformations Using Unlabeled Cardiac MRI Sequences. Jason Fries Nature Communications 2019

Doubly Weak Supervision of Deep Learning Models for Head CT. Khaled Saab MICCAI 2019

A clinical text classification paradigm using weak supervision and deep representation. Yanshan Wang BMC MIDM 2019

A machine-compiled database of genome-wide association studies. Volodymyr Kuleshov Nature Communications 2019

Weak Supervision as an Efficient Approach for Automated Seizure Detection in Electroencephalography. Khaled Saab NPJ Digital Medicine 2020

Extracting Chemical Reactions From Text Using Snorkel. Emily Mallory BMC Bioinformatics 2020

Cross-Modal Data Programming Enables Rapid Medical Machine Learning. Jared A. Dunnmon Patterns 2020

SwellShark: A Generative Model for Biomedical Named Entity Recognition without Labeled Data. Jason Fries

Ontology-driven weak supervision for clinical entity classification in electronic health records. Jason Fries Nature Communications 2021

Utilizing Weak Supervision to Infer Complex Objects and Situations in Autonomous Driving Data. Zhenzhen Weng IV 2019

Multi-frame Weak Supervision to Label Wearable Sensor Data. Saelig Khattar ICML Time Series Workshop 2019

Thesis

Acclerating Machine Learning with Training Data Management. Alex Ratner

Weak Supervision From High-Level Abstrations. Braden Jay Hancock

Other Weak Supervision Paradigm

Label-name Only Supervision

Weakly-Supervised Neural Text Classification. Yu Meng CIKM 2018

Weakly-Supervised Hierarchical Text Classification. Yu Meng AAAI 2019

Weakly-Supervised Aspect-Based Sentiment Analysis via Joint Aspect-Sentiment Topic Embedding. Jiaxin Huang EMNLP 2020

Text Classification Using Label Names Only: A Language Model Self-Training Approach. Yu Meng EMNLP 2020

Hierarchical Metadata-Aware Document Categorization under Weak Supervision. Yu Zhang WSDM 2021

Owner
Jieyu Zhang
CS PhD
Jieyu Zhang
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
Face uncertainty quantification or estimation using PyTorch.

Face-uncertainty-pytorch This is a demo code of face uncertainty quantification or estimation using PyTorch. The uncertainty of face recognition is af

Kaen 3 Sep 16, 2022
GE2340 project source code without credentials.

GE2340-Project-Public GE2340 project source code without credentials. Run the bot.py to start the bot Telegram: @jasperwong_ge2340_bot If the bot does

0 Feb 10, 2022
the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

G2S This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang

NeurAI 4 Jul 27, 2022
OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.

English | 简体中文 Documentation: https://mmtracking.readthedocs.io/ Introduction MMTracking is an open source video perception toolbox based on PyTorch.

OpenMMLab 2.7k Jan 08, 2023
Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect"

Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect" by Michael Ne

M Nestor 1 Apr 19, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
Pydantic models for pywttr and aiopywttr.

Pydantic models for pywttr and aiopywttr.

Almaz 2 Dec 08, 2022
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data 💨 Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Md. Nur habib 2 Feb 18, 2022
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

SUCP Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation () Direct Friends (i.e., users who follow each o

Kosar 8 Nov 26, 2022
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022