Code for the ACL 2021 paper "Structural Guidance for Transformer Language Models"

Overview

Structural Guidance for Transformer Language Models

This repository accompanies the paper, Structural Guidance for Transformer Language Models, published in ACL 2021. It includes inplementation of parsing-as-language-modelling and structural scaffolding for Transformer language models.

Environment

The code is based on Python3. You can install the different modules with

bash scripts/download_and_patch_transformers.sh
pip install -r requirements.txt
python -c "import nltk;nltk.download('punkt')"

The Huggingface transformers is updated indirectly through a patch. If you modifiy the code, to commit changes run

bash scripts/generate_patch.sh

and then just commit this patch

Data preparation

Prepare parsing oracle files

PLM and ScLM require syntactic parses to derive the action sequence oracle. The following command demonstrates how to prepare oracle files for these models.

python src/get_oracle.py --gen --fpath train.txt > train_gen.oracle
python src/get_oracle.py --gen --fpath dev.txt > dev_gen.oracle
python src/get_oracle.py --gen --fpath test.txt > test_gen.oracle

Prepare action ngram list

The following command generates the action ngram list for ScLM models. The training code of ScLM assumes that the action ngram list is stored in the root folder.

python src/get_action_ngram_list.py -f path/to/bllip-lg_train_gen.oracle path/to/bllip-lg_dev_gen.oracle -o bllip-lg_action_ngram_list.txt

Vanilla Language Models (LM)

The script src/lm.py implements a vanilla Transformer language model. Below are the commands for model training and evaluation, as well as commands to compute word-level surprisals from a trained model.

# Model training
python src/lm.py --train_data train.txt --dev_data dev.txt --lr 1e-5 --epochs ${EPOCHS} --seed ${SEED} --do_train --random_init --batch_size ${BATCH_SIZE} --report ${REPORT} --sample_every ${SAMPLE_EVERY} --model_path ${MODEL_PATH}

# Compute word-level perplexity
python src/lm.py --restore_from ${MODEL_PATH} --test_data test.txt --do_test

# Estimate word surprisals
python src/lm.py --restore_from ${MODEL_PATH} --do_eval --fpath ${TEST_SUITE_PATH} --pretokenized > ${OUTPUT_PATH}

Scaffoled Language Models (ScLM)

The script src/lm-sc.py implements Transformer language model with structural prediction as an auxilliary task, referred as ScLM. The commanline variable, ${SCAFFOLD_TYPE}, can be set as past or next, which corresponds to ScLM-past or ScLM-next respectively in the paper.

# Model training  
python src/lm-sc.py --train_data train_gen.oracle --dev_data dev_gen.oracle --lr 1e-5 --epochs ${EPOCHS} --seed ${SEED} --do_train --random_init --batch_size ${BATCH_SIZE} --report ${REPORT} --sample_every ${SAMPLE_EVERY} --alpha 0.5 --scaffold_type ${SCAFFOLD_TYPE} --model_path ${MODEL_PATH}

# Compute word-level perplexity
python src/plm-gen.py --restore_from ${MODEL_PATH} --test_data test_gen.oracle --do_test

# Estimate word surprisals
python src/lm-sc.py --restore_from ${MODEL_PATH} --do_eval --fpath ${TEST_SUITE_PATH} --pretokenized > ${OUTPUT_PATH}

Parsing as Language Modelling (PLM/PLM-mask)

The script src/plm-gen.py implements the idea of generative parsing as language modelling, a probabilistic model of top-down parsing action sequence. There are two variants, PLM and PLM-mask.

For PLM:

# Model training for PLM
python src/plm-gen.py --train_data train_gen.oracle --dev_data dev_gen.oracle --lr 1e-5 --epochs ${EPOCHS} --seed ${SEED} --do_train --batch_size ${BATCH_SIZE} --random_init --report ${REPORT} --sample_every ${SAMPLE_EVERY} --model_path ${MODEL_PATH}

# Estimate word-level perplexity with PLM
python src/plm-gen.py --restore_from ${MODEL_PATH} --test_data test_gen.oracle --do_test

# Estimate word surprisals with PLM
python src/plm-gen.py --restore_from ${MODEL_PATH} --do_eval --beam_size 100 --word_beam_size 10 --fast_track_size 5 --pretokenized --fpath ${TEST_SUITE_PATH} > ${OUTPUT_PATH} 2>${EVAL_LOG_PATH}

For PLM-mask:

# Model training for PLM-mask
python src/plm-gen.py --train_data train_gen.oracle --dev_data dev_gen.oracle --lr 1e-5 --epochs ${EPOCHS} --seed ${SEED} --do_train --batch_size ${BATCH_SIZE} --random_init --add_structured_mask --buffer_head 0 --stack_head 1 --report ${REPORT} --sample_every ${SAMPLE_EVERY} --model_path ${MODEL_PATH}

# Estimate word-level perplexity with PLM-mask
python src/plm-gen.py --restore_from ${MODEL_PATH} --add_structured_mask --buffer_head 0 --stack_head 1 --test_data test_gen.oracle --do_test

# Estimate word surprisals with PLM-mask
python src/plm-gen.py --restore_from ${MODEL_PATH} --add_structured_mask --buffer_head 0 --stack_head 1 --do_eval --beam_size 100 --word_beam_size 10 --fast_track_size 5 --pretokenized --fpath ${TEST_SUITE_PATH} > ${OUTPUT_PATH} 2>>${EVAL_LOG_PATH}

Plot figures

The analysis folder contains the code and model evaluation results for generating the figures in the paper. The following commands run the plotting scripts and generate figures in the figs folder. Python packages matplotlib and pandas are required to run the plotting scripts. RNNG results are taken from Hu et al., (2020).

cd analysis
mkdir -p figs

# Plot results on SG Test Suites and BLiMP-10%.
python analysis_sg.py
python analysis_blimp.py

Acknowledgements

We thank Ramon Astudillo and Tahira Naseem for their contributions to the repository.

Owner
International Business Machines
International Business Machines
Accurately generate all possible forms of an English word e.g "election" --> "elect", "electoral", "electorate" etc.

Accurately generate all possible forms of an English word Word forms can accurately generate all possible forms of an English word. It can conjugate v

Dibya Chakravorty 570 Dec 31, 2022
It analyze the sentiment of the user, whether it is postive or negative.

Sentiment-Analyzer-Tool It analyze the sentiment of the user, whether it is postive or negative. It uses streamlit library for creating this sentiment

Paras Patidar 18 Dec 17, 2022
justCTF [*] 2020 challenges sources

justCTF [*] 2020 This repo contains sources for justCTF [*] 2020 challenges hosted by justCatTheFish. TLDR: Run a challenge with ./run.sh (requires Do

justCatTheFish 25 Dec 27, 2022
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022
All the code I wrote for Overwatch-related projects that I still own the rights to.

overwatch_shit.zip This is (eventually) going to contain all the software I wrote during my five-year imprisonment stay playing Overwatch. I'll be add

zkxjzmswkwl 2 Dec 31, 2021
Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition

Wav2Vec2 STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 mode

David Zurow 22 Dec 29, 2022
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

THUNLP-MT 46 Dec 15, 2022
An Open-Source Package for Neural Relation Extraction (NRE)

OpenNRE We have a DEMO website (http://opennre.thunlp.ai/). Try it out! OpenNRE is an open-source and extensible toolkit that provides a unified frame

THUNLP 3.9k Jan 03, 2023
A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework.

Unpacker Karton Service A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework. This project is

c3rb3ru5 45 Jan 05, 2023
A full spaCy pipeline and models for scientific/biomedical documents.

This repository contains custom pipes and models related to using spaCy for scientific documents. In particular, there is a custom tokenizer that adds

AI2 1.3k Jan 03, 2023
A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Sber AI 37 Dec 07, 2022
pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

297 Dec 29, 2022
Text editor on python tkinter to convert english text to other languages with the help of ployglot.

Transliterator Text Editor This is a simple transliteration program which is used to convert english word to phonetically matching word in another lan

Merin Rose Tom 1 Jan 16, 2022
Code for paper: An Effective, Robust and Fairness-awareHate Speech Detection Framework

BiQQLSTM_HS Code and data for paper: Title: An Effective, Robust and Fairness-awareHate Speech Detection Framework. Authors: Guanyi Mou and Kyumin Lee

Guanyi Mou 2 Dec 27, 2022
precise iris segmentation

PI-DECODER Introduction PI-DECODER, a decoder structure designed for Precise Iris Segmentation and Location. The decoder structure is shown below: Ple

8 Aug 08, 2022
Spokestack is a library that allows a user to easily incorporate a voice interface into any Python application with a focus on embedded systems.

Welcome to Spokestack Python! This library is intended for developing voice interfaces in Python. This can include anything from Raspberry Pi applicat

Spokestack 133 Sep 20, 2022
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP)

Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP) predictions: part-of-speech (POS) tags, chunking (CHK), name entity recognition (

jawahar 20 Apr 30, 2022
A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Machinalis 1.2k Dec 18, 2022
Reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity)

Linear Multihead Attention (Linformer) PyTorch Implementation of reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer:

Kui Xu 58 Dec 23, 2022