glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end.

Overview

Glow-Speak

glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end.

Installation

git clone https://github.com/rhasspy/glow-speak.git
cd glow-speak/

python3 -m venv .venv
source .venv/bin/activate
pip3 install --upgrade pip
pip3 install --upgrade setuptools wheel
pip3 install -f 'https://synesthesiam.github.io/prebuilt-apps/' -r requirements.txt

python3 setup.py develop
glow-speak --version

Voices

The following languages/voices are supported:

  • German
    • de_thorsten
  • Chinese
    • cmn_jing_li
  • Greek
    • el_rapunzelina
  • English
    • en-us_ljspeech
    • en-us_mary_ann
  • Spanish
    • es_tux
  • Finnish
    • fi_harri_tapani_ylilammi
  • French
    • fr_siwis
  • Hungarian
    • hu_diana_majlinger
  • Italian
    • it_riccardo_fasol
  • Korean
    • ko_kss
  • Dutch
    • nl_rdh
  • Russian
    • ru_nikolaev
  • Swedish
    • sv_talesyntese
  • Swahili
    • sw_biblia_takatifu
  • Vietnamese
    • vi_vais1000

Usage

Download Voices

glow-speak-download de_thorsten

Command-Line Synthesis

glow-speak -v en-us_mary_ann 'This is a test.' --output-file test.wav

HTTP Server

glow-speak-http-server --debug

Visit http://localhost:5002

Socket Server

Start the server:

glow-speak-socket-server --voice en-us_mary_ann --socket /tmp/glow-speak.sock

From a separate terminal:

echo 'This is a test.' | bin/glow-speak-socket-client --socket /tmp/glow-speak.sock | xargs aplay

Lines from client to server are synthesized, and the path to the WAV file is returned (usually in /tmp).

You might also like...
End-to-End Speech Processing Toolkit
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.0.1 1.1.0 1.2.0 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 ubuntu18/python3.8/pip ubuntu18

Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Athena is an open-source implementation of end-to-end speech processing engine.

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing. To make speech processing available to everyone, we're also releasing example implementation and recipe on some opensource dataset for various tasks (Automatic Speech Recognition, Speech Synthesis, Voice Conversion, Speaker Recognition, etc).

Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

🤗 Contributing to OpenSpeech 🤗 OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform ta

 SHAS: Approaching optimal Segmentation for End-to-End Speech Translation
SHAS: Approaching optimal Segmentation for End-to-End Speech Translation

SHAS: Approaching optimal Segmentation for End-to-End Speech Translation In this repo you can find the code of the Supervised Hybrid Audio Segmentatio

An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

CRNN paper:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 1. create your ow

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipBERT is designed based on 2D CNNs and transformers, and uses a sparse sampling strategy to enable efficient end-to-end video-and-language learning.

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Comments
  • AssertionError on web interface (only) - and Raspberry Pi Bullseye test

    AssertionError on web interface (only) - and Raspberry Pi Bullseye test

    Hi Micheal,

    great work again! :smiley:

    I just saw this repository and thought I'd give it a try on my freshly installed Raspberry Pi 4 with 32bit Raspberry Pi OS Bullseye (Debian 11). Installation almost finished without errors! :partying_face: ... I just had to fix one thing: sudo apt-get install libatlas-base-dev After 15min I was already generating audio :grin: :+1:

    When I tested en mary_ann and thorsten_de via the web interface I got this error as soon as my test sentence ended with a question mark:

    DEBUG:glow-speak:ɪ_z ð_ɪ_s ɐ_n_ˈʌ_ð_ɚ t_ˈɛ_s_t? .
    ERROR:glow_speak.http_server:
    Traceback (most recent call last):
      File "/home/pi/glow-speak/.venv/lib/python3.9/site-packages/quart/app.py", line 1490, in full_dispatch_request
        result = await self.dispatch_request(request_context)
      File "/home/pi/glow-speak/.venv/lib/python3.9/site-packages/quart/app.py", line 1536, in dispatch_request
        return await self.ensure_async(handler)(**request_.view_args)
      File "/home/pi/glow-speak/glow_speak/http_server.py", line 484, in app_say
        wav_bytes = await text_to_wav(text, voice, **tts_args)
      File "/home/pi/glow-speak/glow_speak/http_server.py", line 323, in text_to_wav
        text_ids = text_to_ids(
      File "/home/pi/glow-speak/glow_speak/__init__.py", line 110, in text_to_ids
        text_ids = phonemes2ids(
      File "/home/pi/glow-speak/.venv/lib/python3.9/site-packages/phonemes2ids/__init__.py", line 190, in phonemes2ids
        maybe_extend_ids(sub_phoneme, word_ids, append_list=False)
      File "/home/pi/glow-speak/.venv/lib/python3.9/site-packages/phonemes2ids/__init__.py", line 108, in maybe_extend_ids
        maybe_ids = missing_func(phoneme)
      File "/home/pi/glow-speak/glow_speak/__init__.py", line 59, in guess_ids
        typing.List[Phoneme], guess_phonemes(phoneme, self.to_phonemes)
      File "/home/pi/glow-speak/.venv/lib/python3.9/site-packages/gruut_ipa/accent.py", line 159, in guess_phonemes
        assert dist_split is not None
    AssertionError
    

    Maybe some encoding error when reading the web input?

    Speed seems pretty good, comparable to Larynx I'd say :+1: and I noticed the pronunciations have been improved for German :clap: :sunglasses:

    opened by fquirin 0
Owner
Rhasspy
Offline voice assistant
Rhasspy
自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器

ja-timex 自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器 概要 ja-timex は、現代日本語で書かれた自然文に含まれる時間情報表現を抽出しTIMEX3と呼ばれるアノテーション仕様に変換することで、プログラムが利用できるような形に規格化するルールベースの解析器です。

Yuki Okuda 116 Nov 09, 2022
A Word Level Transformer layer based on PyTorch and 🤗 Transformers.

Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf

Riccardo Orlando 27 Nov 20, 2022
PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI

data2vec-pytorch PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI (F

Aryan Shekarlaban 105 Jan 04, 2023
This code is the implementation of Text Emotion Recognition (TER) with linguistic features

APSIPA-TER This code is the implementation of Text Emotion Recognition (TER) with linguistic features. The network model is BERT with a pretrained mod

kenro515 1 Feb 08, 2022
A number of methods in order to perform Natural Language Processing on live data derived from Twitter

A number of methods in order to perform Natural Language Processing on live data derived from Twitter

1 Nov 24, 2021
A python script that will use hydra to get user and password to login to ssh, ftp, and telnet

Hydra-Auto-Hack A python script that will use hydra to get user and password to login to ssh, ftp, and telnet Project Description This python script w

2 Jan 16, 2022
A Lightweight NLP Data Loader for All Deep Learning Frameworks in Python

LineFlow: Framework-Agnostic NLP Data Loader in Python LineFlow is a simple text dataset loader for NLP deep learning tasks. LineFlow was designed to

TofuNLP 177 Jan 04, 2023
Dust model dichotomous performance analysis

Dust-model-dichotomous-performance-analysis Using a collated dataset of 90,000 dust point source observations from 9 drylands studies from around the

1 Dec 17, 2021
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

Tencent 633 Dec 28, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles

Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles (TASLP 2022)

Zhuosheng Zhang 3 Apr 14, 2022
Build Text Rerankers with Deep Language Models

Reranker is a lightweight, effective and efficient package for training and deploying deep languge model reranker in information retrieval (IR), question answering (QA) and many other natural languag

Luyu Gao 140 Dec 06, 2022
neural network based speaker embedder

Content What is deepaudio-speaker? Installation Get Started Model Architecture How to contribute to deepaudio-speaker? Acknowledge What is deepaudio-s

20 Dec 29, 2022
This library is testing the ethics of language models by using natural adversarial texts.

prompt2slip This library is testing the ethics of language models by using natural adversarial texts. This tool allows for short and simple code and v

9 Dec 28, 2021
CLIPfa: Connecting Farsi Text and Images

CLIPfa: Connecting Farsi Text and Images OpenAI released the paper Learning Transferable Visual Models From Natural Language Supervision in which they

Sajjad Ayoubi 66 Dec 14, 2022
nlpcommon is a python Open Source Toolkit for text classification.

nlpcommon nlpcommon, Python Text Tool. Guide Feature Install Usage Dataset Contact Cite Reference Feature nlpcommon is a python Open Source

xuming 3 May 29, 2022
Yomichad - a Japanese pop-up dictionary that can display readings and English definitions of Japanese words

Yomichad is a Japanese pop-up dictionary that can display readings and English definitions of Japanese words, kanji, and optionally named entities. It is similar to yomichan, 10ten, and rikaikun in s

Jonas Belouadi 7 Nov 07, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag helps humans intuitively express how they think about their files using tags and machine learning. Represent how you think using tags. Find what you look for using semantic search for your t

Ravn Tech, Inc. 166 Jan 07, 2023
SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors [Paper] [Project Website] Pytorch implementation for SAVI2I. We

Qi Mao 44 Dec 30, 2022
Stanford CoreNLP provides a set of natural language analysis tools written in Java

Stanford CoreNLP Stanford CoreNLP provides a set of natural language analysis tools written in Java. It can take raw human language text input and giv

Stanford NLP 8.8k Jan 07, 2023