BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

Related tags

Text Data & NLPbertac
Overview

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC is a framework that combines a Transformer-based Language Model (TLM) such as BERT with an adversarially pretrained CNN (Convolutional Neural Network). It was proposed in our ACL-IJCNLP paper:

We showed in our experiments that BERTAC can improve the performance of TLMs on GLUE and open-domain QA tasks when using ALBERT or RoBERTa as the base TLM.

This repository provides the source code for BERTAC and adversarially pretrained CNN models described in the ACL-IJCNLP 2021 paper.

You can download the code and CNN models by following the procedure described in the "Try BERTAC section." The procedure includes downloading the BERTAC code, installing libraries required to run the code, and downloading pretrained models of the fastText word embedding vectors, the ALBERT xxlarge model, and our adversarially pretrained CNNs. The CNNs provided here were pretrained using the settings described in our ACL-IJCNLP 2021 paper. They can be downloaded automatically by running the script download_pretrained_model.sh as described in the "Try BERTAC section" or manually from the following page: cnn_models/README.md.

After this is done, you can run the GLUE and Open-domain QA experiments in the ACL-IJCNLP 2021 paper by following the procedure described in these pages, examples/GLUE/README.md and examples/QA/README.md. The procedure for the experiments starts from downloading GLUE and open-domain QA datasets (Quasar-T and SearchQA datasets for open-domain QA) and includes preprocessing the dataset and training/evaluating BERTAC models.

Overview of BERTAC

BERTAC is designed to improve Transformer-based Language Models such as ALBERT and BERT by integrating a simple CNN to them. The CNN is pretrained in a GAN (Generative Adversarial Network) style using Wikipedia data. By using as training data sentences in which an entity was masked in a cloze-test style, the CNN can generate alternative entity representations from sentences. BERTAC aims to improve TLMs for a variety of downstream tasks by using multiple text representations computed from different perspectives, i.e., those of TLMs trained by masked language modeling and those of CNNs trained in a GAN style to generate entity representations.

For a technical description of BERTAC, see our paper:

Try BERTAC

Prerequisites

BERTAC requires the following libraries and tools at runtime.

  • CUDA: A CUDA runtime must be available in the runtime environment. Currently, BERTAC has been tested with CUDA 10.1 and 10.2.
  • Python and Pytorch: BERTAC has been tested with Python 3.6 and 3.8, and Pytorch 1.5.1 and 1.8.1.
  • Perl: BERTAC has been tested with Perl 5.16.1 and 5.26.2.

Installation

You can install BERTAC by following the procedure described below.

  • Create a new conda environment bertac using the following command. Set a CUDA version available in your environment.
conda create -n bertac python=3.8 tqdm requests scikit-learn cudatoolkit cudnn lz4
  • Install Pytorch into the conda environment
conda activate bertac
conda install -n bertac pytorch=1.8 -c pytorch
  • Git clone the BERTAC code and run pip install -r requirements.txt in the root directory.
# git clone the code
git clone https://github.com/nict-wisdom/bertac
cd bertac

# Install requirements
pip install -r requirements.txt
  • Download the spaCy model en_core_web_md.
# Download the spaCy model 'en_core_web_md' 
python -m spacy download en_core_web_md
  • Install Perl and its JSON module into the conda environment.
# Install Perl and its JSON module
conda install -c anaconda perl -n bertac38
cpan install JSON
# Download pretrained CNN models, the fastText word embedding vectors, and
# the ALBERT xxlarge model (albert-xxlarge-v2) 
sh download_pretrained_model.sh

Note: the BERTAC code was built on the HuggingFace Transformers v2.4.1 and requires the NVIDIA apex as in the HuggingFace Transformers. Please install the NVIDIA apex following the procedure described in the NVIDIA apex page.

You can enter examples/GLUE or examples/QA folders and try the bash commands under these folders to run GLUE or open-domain QA experiments (see examples/GLUE/README.md and examples/QA/README.md for details on the procedures of the experiments).

GLUE experiments

You can run GLUE experiments by following the procedure described in examples/GLUE/README.md.

Results

The performances of BERTAC and other baseline models on the GLUE development set are shown below.

Models MNLI QNLI QQP RTE SST MRPC CoLA STS Avg.
RoBERTa-large 90.2/90.2 94.7 92.2 86.6 96.4 90.9 68.0 92.4 88.9
ELECTRA-large 90.9/- 95.0 92.4 88.0 96.9 90.8 69.1 92.6 89.5
ALBERT-xxlarge 90.8/- 95.3 92.2 89.2 96.9 90.9 71.4 93.0 90.0
DeBERTa-large 91.1/91.1 95.3 92.3 88.3 96.8 91.9 70.5 92.8 90.0
BERTAC
(ALBERT-xxlarge)
91.3/91.1 95.7 92.3 89.9 97.2 92.4 73.7 93.1 90.7

BERTAC(ALBERT-xxlarge), i.e., BERTAC using ALBERT-xxlarge as its base TLM, showed a higher average score (Avg. of the last column in the table) than (1) ALBERT-xxlarge (the base TLM) and (2) DeBERTa-large (the state-of-the-art method for the GLUE development set).

Open-domain QA experiments

You can run open-domain QA experiments by following the procedure described in examples/QA/README.md.

Results

The performances of BERTAC and other baseline methods on Quasar-T and SearchQA benchmarks are as follows.

Model Quasar-T (EM/F1) SearchQA (EM/F1)
OpenQA 42.2/49.3 58.8/64.5
OpenQA+ARG 43.2/49.7 59.6/65.3
WKLM(BERT-base) 45.8/52.2 61.7/66.7
MBERT(BERT-large) 51.1/59.1 65.1/70.7
CFormer(RoBERTa-large) 54.0/63.9 68.0/75.1
BERTAC(RoBERTa-large) 55.8/63.7 71.9/77.1
BERTAC(ALBERT-xxlarge) 58.0/65.8 74.0/79.2

Here, BERTAC(RoBERTa-large) and BERTAC(ALBERT-xxlarge) represent BERTAC using RoBERTa-large and ALBERT-xxlarge as their base TLM, respectively. BERTAC with any of the base TLMs showed better EM (Exact match with the gold standard answers) than the state-of-the-art method, CFormer(RoBERTa-large), for both benchmarks (Quasar-T and SearchQA).

Citation

If you use this source code, we would appreciate if you cite the following paper:

@inproceedings{ohetal2021bertac,
  title={BERTAC: Enhancing Transformer-based Language Models 
         with Adversarially Pretrained Convolutional Neural Networks},
  author={Jong-Hoon Oh and Ryu Iida and 
          Julien Kloetzer and Kentaro Torisawa},
  booktitle={The Joint Conference of the 59th Annual Meeting  
             of the Association for Computational Linguistics  
             and the 11th International Joint Conference 
             on Natural Language Processing (ACL-IJCNLP 2021)},
  year={2021}
}

Acknowledgements

Part of the source codes is borrowed from HuggingFace Transformers v2.4.1 licensed under Apache 2.0, DrQA licensed under BSD, and Open-QA licensed under MIT.

You might also like...
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

New State-of-the-Art in Preposition Sense Disambiguation Supervisor: Prof. Dr. Alexander Mehler Alexander Henlein Institutions: Goethe University TTLa

LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated

Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated. This engine can later be used for downstream tasks in NLP such as Q&A, summarization, generation, and natural language understanding (NLU).

PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer
PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Cross-Covariance Image Transformer (XCiT) PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer L

A library for finding knowledge neurons in pretrained transformer models.
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)
Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

CIRPLANT This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT) For d

Releases(cnn_2.3.4.300)
Twewy-discord-chatbot - Build a Discord AI Chatbot that Speaks like Your Favorite Character

Build a Discord AI Chatbot that Speaks like Your Favorite Character! This is a Discord AI Chatbot that uses the Microsoft DialoGPT conversational mode

Lynn Zheng 231 Dec 30, 2022
Sample data associated with the Aurora-BP study

The Aurora-BP Study and Dataset This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset

Microsoft 16 Dec 12, 2022
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Ankur Dhuriya 10 Oct 13, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

606 Dec 28, 2022
Py65 65816 - Add support for the 65C816 to py65

Add support for the 65C816 to py65 Py65 (https://github.com/mnaberez/py65) is a

4 Jan 04, 2023
GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning

GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning GrammarTagger is an open-source toolkit for grammatical profiling for lan

Octanove Labs 27 Jan 05, 2023
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 358 Dec 24, 2022
Python module (C extension and plain python) implementing Aho-Corasick algorithm

pyahocorasick pyahocorasick is a fast and memory efficient library for exact or approximate multi-pattern string search meaning that you can find mult

Wojciech Muła 763 Dec 27, 2022
2021海华AI挑战赛·中文阅读理解·技术组·第三名

文字是人类用以记录和表达的最基本工具,也是信息传播的重要媒介。透过文字与符号,我们可以追寻人类文明的起源,可以传播知识与经验,读懂文字是认识与了解的第一步。对于人工智能而言,它的核心问题之一就是认知,而认知的核心则是语义理解。

21 Dec 26, 2022
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
Opal-lang - A WIP programming language based on Python

thanks to aphitorite for the beautiful logo! opal opal is a WIP transcompiled pr

3 Nov 04, 2022
DLO8012: Natural Language Processing & CSL804: Computational Lab - II

NATURAL-LANGUAGE-PROCESSING-AND-COMPUTATIONAL-LAB-II DLO8012: NLP & CSL804: CL-II [SEMESTER VIII] Syllabus NLP - Reference Books THE WALL MEGA SATISH

AMEY THAKUR 7 Apr 28, 2022
KoBART model on huggingface transformers

KoBART-Transformers SKT에서 공개한 KoBART를 편리하게 사용할 수 있게 transformers로 포팅하였습니다. Install (Optional) BartModel과 PreTrainedTokenizerFast를 이용하면 설치하실 필요 없습니다. p

Hyunwoong Ko 58 Dec 07, 2022
Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER (EMNLP 2021).

Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER. @inproceedings{tedes

Babelscape 40 Dec 11, 2022
A collection of GNN-based fake news detection models.

This repo includes the Pytorch-Geometric implementation of a series of Graph Neural Network (GNN) based fake news detection models. All GNN models are implemented and evaluated under the User Prefere

SafeGraph 251 Jan 01, 2023
Index different CKAN entities in Solr, not just datasets

ckanext-sitesearch Index different CKAN entities in Solr, not just datasets Requirements This extension requires CKAN 2.9 or higher and Python 3 Featu

Open Knowledge Foundation 3 Dec 02, 2022
A PyTorch Implementation of End-to-End Models for Speech-to-Text

speech Speech is an open-source package to build end-to-end models for automatic speech recognition. Sequence-to-sequence models with attention, Conne

Awni Hannun 647 Dec 25, 2022
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
🎐 a python library for doing approximate and phonetic matching of strings.

jellyfish Jellyfish is a python library for doing approximate and phonetic matching of strings. Written by James Turk James Turk 1.8k Dec 21, 2022

DAGAN - Dual Attention GANs for Semantic Image Synthesis

Contents Semantic Image Synthesis with DAGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evalu

Hao Tang 104 Oct 08, 2022