BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

Related tags

Text Data & NLPbertac
Overview

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC is a framework that combines a Transformer-based Language Model (TLM) such as BERT with an adversarially pretrained CNN (Convolutional Neural Network). It was proposed in our ACL-IJCNLP paper:

We showed in our experiments that BERTAC can improve the performance of TLMs on GLUE and open-domain QA tasks when using ALBERT or RoBERTa as the base TLM.

This repository provides the source code for BERTAC and adversarially pretrained CNN models described in the ACL-IJCNLP 2021 paper.

You can download the code and CNN models by following the procedure described in the "Try BERTAC section." The procedure includes downloading the BERTAC code, installing libraries required to run the code, and downloading pretrained models of the fastText word embedding vectors, the ALBERT xxlarge model, and our adversarially pretrained CNNs. The CNNs provided here were pretrained using the settings described in our ACL-IJCNLP 2021 paper. They can be downloaded automatically by running the script download_pretrained_model.sh as described in the "Try BERTAC section" or manually from the following page: cnn_models/README.md.

After this is done, you can run the GLUE and Open-domain QA experiments in the ACL-IJCNLP 2021 paper by following the procedure described in these pages, examples/GLUE/README.md and examples/QA/README.md. The procedure for the experiments starts from downloading GLUE and open-domain QA datasets (Quasar-T and SearchQA datasets for open-domain QA) and includes preprocessing the dataset and training/evaluating BERTAC models.

Overview of BERTAC

BERTAC is designed to improve Transformer-based Language Models such as ALBERT and BERT by integrating a simple CNN to them. The CNN is pretrained in a GAN (Generative Adversarial Network) style using Wikipedia data. By using as training data sentences in which an entity was masked in a cloze-test style, the CNN can generate alternative entity representations from sentences. BERTAC aims to improve TLMs for a variety of downstream tasks by using multiple text representations computed from different perspectives, i.e., those of TLMs trained by masked language modeling and those of CNNs trained in a GAN style to generate entity representations.

For a technical description of BERTAC, see our paper:

Try BERTAC

Prerequisites

BERTAC requires the following libraries and tools at runtime.

  • CUDA: A CUDA runtime must be available in the runtime environment. Currently, BERTAC has been tested with CUDA 10.1 and 10.2.
  • Python and Pytorch: BERTAC has been tested with Python 3.6 and 3.8, and Pytorch 1.5.1 and 1.8.1.
  • Perl: BERTAC has been tested with Perl 5.16.1 and 5.26.2.

Installation

You can install BERTAC by following the procedure described below.

  • Create a new conda environment bertac using the following command. Set a CUDA version available in your environment.
conda create -n bertac python=3.8 tqdm requests scikit-learn cudatoolkit cudnn lz4
  • Install Pytorch into the conda environment
conda activate bertac
conda install -n bertac pytorch=1.8 -c pytorch
  • Git clone the BERTAC code and run pip install -r requirements.txt in the root directory.
# git clone the code
git clone https://github.com/nict-wisdom/bertac
cd bertac

# Install requirements
pip install -r requirements.txt
  • Download the spaCy model en_core_web_md.
# Download the spaCy model 'en_core_web_md' 
python -m spacy download en_core_web_md
  • Install Perl and its JSON module into the conda environment.
# Install Perl and its JSON module
conda install -c anaconda perl -n bertac38
cpan install JSON
# Download pretrained CNN models, the fastText word embedding vectors, and
# the ALBERT xxlarge model (albert-xxlarge-v2) 
sh download_pretrained_model.sh

Note: the BERTAC code was built on the HuggingFace Transformers v2.4.1 and requires the NVIDIA apex as in the HuggingFace Transformers. Please install the NVIDIA apex following the procedure described in the NVIDIA apex page.

You can enter examples/GLUE or examples/QA folders and try the bash commands under these folders to run GLUE or open-domain QA experiments (see examples/GLUE/README.md and examples/QA/README.md for details on the procedures of the experiments).

GLUE experiments

You can run GLUE experiments by following the procedure described in examples/GLUE/README.md.

Results

The performances of BERTAC and other baseline models on the GLUE development set are shown below.

Models MNLI QNLI QQP RTE SST MRPC CoLA STS Avg.
RoBERTa-large 90.2/90.2 94.7 92.2 86.6 96.4 90.9 68.0 92.4 88.9
ELECTRA-large 90.9/- 95.0 92.4 88.0 96.9 90.8 69.1 92.6 89.5
ALBERT-xxlarge 90.8/- 95.3 92.2 89.2 96.9 90.9 71.4 93.0 90.0
DeBERTa-large 91.1/91.1 95.3 92.3 88.3 96.8 91.9 70.5 92.8 90.0
BERTAC
(ALBERT-xxlarge)
91.3/91.1 95.7 92.3 89.9 97.2 92.4 73.7 93.1 90.7

BERTAC(ALBERT-xxlarge), i.e., BERTAC using ALBERT-xxlarge as its base TLM, showed a higher average score (Avg. of the last column in the table) than (1) ALBERT-xxlarge (the base TLM) and (2) DeBERTa-large (the state-of-the-art method for the GLUE development set).

Open-domain QA experiments

You can run open-domain QA experiments by following the procedure described in examples/QA/README.md.

Results

The performances of BERTAC and other baseline methods on Quasar-T and SearchQA benchmarks are as follows.

Model Quasar-T (EM/F1) SearchQA (EM/F1)
OpenQA 42.2/49.3 58.8/64.5
OpenQA+ARG 43.2/49.7 59.6/65.3
WKLM(BERT-base) 45.8/52.2 61.7/66.7
MBERT(BERT-large) 51.1/59.1 65.1/70.7
CFormer(RoBERTa-large) 54.0/63.9 68.0/75.1
BERTAC(RoBERTa-large) 55.8/63.7 71.9/77.1
BERTAC(ALBERT-xxlarge) 58.0/65.8 74.0/79.2

Here, BERTAC(RoBERTa-large) and BERTAC(ALBERT-xxlarge) represent BERTAC using RoBERTa-large and ALBERT-xxlarge as their base TLM, respectively. BERTAC with any of the base TLMs showed better EM (Exact match with the gold standard answers) than the state-of-the-art method, CFormer(RoBERTa-large), for both benchmarks (Quasar-T and SearchQA).

Citation

If you use this source code, we would appreciate if you cite the following paper:

@inproceedings{ohetal2021bertac,
  title={BERTAC: Enhancing Transformer-based Language Models 
         with Adversarially Pretrained Convolutional Neural Networks},
  author={Jong-Hoon Oh and Ryu Iida and 
          Julien Kloetzer and Kentaro Torisawa},
  booktitle={The Joint Conference of the 59th Annual Meeting  
             of the Association for Computational Linguistics  
             and the 11th International Joint Conference 
             on Natural Language Processing (ACL-IJCNLP 2021)},
  year={2021}
}

Acknowledgements

Part of the source codes is borrowed from HuggingFace Transformers v2.4.1 licensed under Apache 2.0, DrQA licensed under BSD, and Open-QA licensed under MIT.

You might also like...
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

New State-of-the-Art in Preposition Sense Disambiguation Supervisor: Prof. Dr. Alexander Mehler Alexander Henlein Institutions: Goethe University TTLa

LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated

Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated. This engine can later be used for downstream tasks in NLP such as Q&A, summarization, generation, and natural language understanding (NLU).

PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer
PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Cross-Covariance Image Transformer (XCiT) PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer L

A library for finding knowledge neurons in pretrained transformer models.
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)
Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

CIRPLANT This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT) For d

Releases(cnn_2.3.4.300)
Original implementation of the pooling method introduced in "Speaker embeddings by modeling channel-wise correlations"

Speaker-Embeddings-Correlation-Pooling This is the original implementation of the pooling method introduced in "Speaker embeddings by modeling channel

Themos Stafylakis 10 Apr 30, 2022
मराठी भाषा वाचविण्याचा एक प्रयास. इंग्रजी ते मराठीचा शब्दकोश. An attempt to preserve the Marathi language. A lightweight and ad free English to Marathi thesaurus.

For English, scroll down मराठी शब्द मराठी भाषा वाचवण्यासाठी मी हा ओपन सोर्स प्रोजेक्ट सुरू केला आहे. माझ्या मते, आपली भाषा हळूहळू आणि कोणाचाही लक्षात

मुक्त स्त्रोत 20 Oct 11, 2022
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 A repository part of the MarIA project. Corpora 📃 Corpora Number of documents Number of tokens Size (GB) BNE 201,080,084

Plan de Tecnologías del Lenguaje - Gobierno de España 203 Dec 20, 2022
Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

wangle 823 Dec 28, 2022
Unsupervised text tokenizer for Neural Network-based text generation.

SentencePiece SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabu

Google 6.4k Jan 01, 2023
Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

2 Dec 29, 2022
Simple, hackable offline speech to text - using the VOSK-API.

Simple, hackable offline speech to text - using the VOSK-API.

Campbell Barton 844 Jan 07, 2023
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 358 Dec 24, 2022
A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

Won Joon Yoo 335 Jan 04, 2023
This repository contains all the source code that is needed for the project : An Efficient Pipeline For Bloom’s Taxonomy Using Natural Language Processing and Deep Learning

Pipeline For NLP with Bloom's Taxonomy Using Improved Question Classification and Question Generation using Deep Learning This repository contains all

Rohan Mathur 9 Jul 17, 2021
Korea Spell Checker

한국어 문서 koSpellPy Korean Spell checker How to use Install pip install kospellpy Use from kospellpy import spell_init spell_checker = spell_init() # d

kangsukmin 2 Oct 20, 2021
Azure Text-to-speech service for Home Assistant

Azure Text-to-speech service for Home Assistant The Azure text-to-speech platform uses online Azure Text-to-Speech cognitive service to read a text wi

Yassine Selmi 2 Aug 06, 2022
🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

Hugging Face 15k Jan 02, 2023
LightSeq: A High-Performance Inference Library for Sequence Processing and Generation

LightSeq is a high performance inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP models such as BERT, GPT2, Transform

Bytedance Inc. 2.5k Jan 03, 2023
Super easy library for BERT based NLP models

Fast-Bert New - Learning Rate Finder for Text Classification Training (borrowed with thanks from https://github.com/davidtvs/pytorch-lr-finder) Suppor

Utterworks 1.8k Dec 27, 2022
A PyTorch implementation of VIOLET

VIOLET: End-to-End Video-Language Transformers with Masked Visual-token Modeling A PyTorch implementation of VIOLET Overview VIOLET is an implementati

Tsu-Jui Fu 119 Dec 30, 2022
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 01, 2023
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022