Distributed scikit-learn meta-estimators in PySpark

Overview
sk-dist

sk-dist: Distributed scikit-learn meta-estimators in PySpark

License Build Status PyPI Package Downloads Python Versions

What is it?

sk-dist is a Python package for machine learning built on top of scikit-learn and is distributed under the Apache 2.0 software license. The sk-dist module can be thought of as "distributed scikit-learn" as its core functionality is to extend the scikit-learn built-in joblib parallelization of meta-estimator training to spark. A popular use case is the parallelization of grid search as shown here:

sk-dist

Check out the blog post for more information on the motivation and use cases of sk-dist.

Main Features

  • Distributed Training - sk-dist parallelizes the training of scikit-learn meta-estimators with PySpark. This allows distributed training of these estimators without any constraint on the physical resources of any one machine. In all cases, spark artifacts are automatically stripped from the fitted estimator. These estimators can then be pickled and un-pickled for prediction tasks, operating identically at predict time to their scikit-learn counterparts. Supported tasks are:
  • Distributed Prediction - sk-dist provides a prediction module which builds vectorized UDFs for PySpark DataFrames using fitted scikit-learn estimators. This distributes the predict and predict_proba methods of scikit-learn estimators, enabling large scale prediction with scikit-learn.
  • Feature Encoding - sk-dist provides a flexible feature encoding utility called Encoderizer which encodes mix-typed feature spaces using either default behavior or user defined customizable settings. It is particularly aimed at text features, but it additionally handles numeric and dictionary type feature spaces.

Installation

Dependencies

sk-dist requires:

Dependency Notes

  • versions of numpy, scipy and joblib that are compatible with any supported version of scikit-learn should be sufficient for sk-dist
  • sk-dist is not supported with Python 2

Spark Dependencies

Most sk-dist functionality requires a spark installation as well as PySpark. Some functionality can run without spark, so spark related dependencies are not required. The connection between sk-dist and spark relies solely on a sparkContext as an argument to various sk-dist classes upon instantiation.

A variety of spark configurations and setups will work. It is left up to the user to configure their own spark setup. The testing suite runs spark 2.4 and spark 3.0, though any spark 2.0+ versions are expected to work.

Additional spark related dependecies are pyarrow, which is used only for skdist.predict functions. This uses vectorized pandas UDFs which require pyarrow>=0.8.0, tested with pyarrow==0.16.0. Depending on the spark version, it may be necessary to set spark.conf.set("spark.sql.execution.arrow.enabled", "true") in the spark configuration.

User Installation

The easiest way to install sk-dist is with pip:

pip install --upgrade sk-dist

You can also download the source code:

git clone https://github.com/Ibotta/sk-dist.git

Testing

With pytest installed, you can run tests locally:

pytest sk-dist

Examples

The package contains numerous examples on how to use sk-dist in practice. Examples of note are:

Gradient Boosting

sk-dist has been tested with a number of popular gradient boosting packages that conform to the scikit-learn API. This includes xgboost and catboost. These will need to be installed in addition to sk-dist on all nodes of the spark cluster via a node bootstrap script. Version compatibility is left up to the user.

Support for lightgbm is not guaranteed, as it requires additional installations on all nodes of the spark cluster. This may work given proper installation but has not beed tested with sk-dist.

Background

The project was started at Ibotta Inc. on the machine learning team and open sourced in 2019.

It is currently maintained by the machine learning team at Ibotta. Special thanks to those who contributed to sk-dist while it was initially in development at Ibotta:

Thanks to James Foley for logo artwork.

IbottaML
Owner
Ibotta
Ibotta
Mortality risk prediction for COVID-19 patients using XGBoost models

Mortality risk prediction for COVID-19 patients using XGBoost models Using demographic and lab test data received from the HM Hospitales in Spain, I b

1 Jan 19, 2022
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Reproducibility and Replicability of Web Measurement Studies

Reproducibility and Replicability of Web Measurement Studies This repository holds additional material to the paper "Reproducibility and Replicability

6 Dec 31, 2022
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made th

Krishna Priyatham Potluri 73 Dec 01, 2022
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 02, 2023
CVXPY is a Python-embedded modeling language for convex optimization problems.

CVXPY The CVXPY documentation is at cvxpy.org. We are building a CVXPY community on Discord. Join the conversation! For issues and long-form discussio

4.3k Jan 08, 2023
Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET Can a machine learning project be implemented to estimate the salaries of baseball players whos

Pinar Oner 7 Dec 18, 2021
ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Broad Institute 65 Dec 20, 2022
The Fuzzy Labs guide to the universe of open source MLOps

Open Source MLOps This is the Fuzzy Labs guide to the universe of free and open source MLOps tools. Contents What is MLOps, anyway? Data version contr

Fuzzy Labs 352 Dec 29, 2022
A Python step-by-step primer for Machine Learning and Optimization

early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat

Dimitri Bettebghor 8 Dec 01, 2022
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
This handbook accompanies the course: Machine Learning with Hung-Yi Lee

This handbook accompanies the course: Machine Learning with Hung-Yi Lee

RenChu Wang 472 Dec 31, 2022
Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku L

Jesùs Guillen 1 Jun 03, 2022
A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

Arundo Analytics 888 Dec 30, 2022
Python package for machine learning for healthcare using a OMOP common data model

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.

Sontag Lab 75 Jan 03, 2023
🤖 ⚡ scikit-learn tips

🤖 ⚡ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. 👉 Sign up to receive 2 video tips by email every week! 👈 List of all

Kevin Markham 1.6k Jan 03, 2023
As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Crate will be the hub of various ML projects which will be the resources for the ML enthusiasts! Open Source Program: SWOC 2021 and JWOC 2022.

Machine Learning Loot Crate 💻 🧰 🔴 Welcome contributors! As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Cra

Abhishek Sharma 89 Dec 28, 2022
Uses WiFi signals :signal_strength: and machine learning to predict where you are

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Pascal van Kooten 5k Jan 09, 2023