onelearn: Online learning in Python

Overview

Build Status Documentation Status PyPI - Python Version PyPI - Wheel GitHub stars GitHub issues GitHub license Coverage Status

onelearn: Online learning in Python

Documentation | Reproduce experiments |

onelearn stands for ONE-shot LEARNning. It is a small python package for online learning with Python. It provides :

  • online (or one-shot) learning algorithms: each sample is processed once, only a single pass is performed on the data
  • including multi-class classification and regression algorithms
  • For now, only ensemble methods, namely Random Forests

Installation

The easiest way to install onelearn is using pip

pip install onelearn

But you can also use the latest development from github directly with

pip install git+https://github.com/onelearn/onelearn.git

References

@article{mourtada2019amf,
  title={AMF: Aggregated Mondrian Forests for Online Learning},
  author={Mourtada, Jaouad and Ga{\"\i}ffas, St{\'e}phane and Scornet, Erwan},
  journal={arXiv preprint arXiv:1906.10529},
  year={2019}
}
Comments
  • Unable to pickle AMFClassifier.

    Unable to pickle AMFClassifier.

    I would like to save the AMFClassifier, but am unable to pickle it. I have also tried to use dill or joblib, but they also don't seem to work.

    Is there maybe another way to somehow export the AMFClassifier in any way, such that I can save it and load it in another kernel?

    Below I added a snippet of code which reproduces the error. Note that only after the partial_fit method an error occurs when pickling. When the AMFClassifier has not been fit yet, pickling happens without problems, however, exporting an empty model is pretty useless.

    Any help or tips is much appreciated.

    from onelearn import AMFClassifier
    import dill as pickle
    from sklearn import datasets
    
    
    iris = datasets.load_iris()
    X = iris.data
    y = iris.target
    
    amf = AMFClassifier(n_classes=3)
    
    dump = pickle.dumps(amf)
    amf = pickle.loads(dump)
    
    amf.partial_fit(X,y)
    
    dump = pickle.dumps(amf)
    amf = pickle.loads(dump)
    
    opened by w-feijen 1
  • Move experiments of the paper in a experiments folder

    Move experiments of the paper in a experiments folder

    • Update the documentation
    • Explain that we must clone the repo

    Move also the short experiments to a examples folder and build a sphinx gallery with it

    enhancement 
    opened by stephanegaiffas 1
  • Add some extra tests

    Add some extra tests

    • Test that batch versus online training leads to the exact same forest
    • Test the behavior of reserve_samples, with several calls to partial_fit to check that memory is correctly allocated and
    tests 
    opened by stephanegaiffas 1
  • What if predict_proba receives a single sample

    What if predict_proba receives a single sample

    get_amf_decision_online amf.partial_fit(X_train[iteration - 1], y_train[iteration - 1]) File "/Users/stephanegaiffas/Code/onelearn/onelearn/forest.py", line 259, in partial_fit n_samples, n_features = X.shape

    opened by stephanegaiffas 1
  • Improve coverage

    Improve coverage

    A problem is that @jit functions don't work with coverage... a workaround is to disable using the NUMBA_DISABLE_JIT environment variable, but breaks the code that use @jitclass and .class_type.instance_type attributes

    enhancement bug fix 
    opened by stephanegaiffas 1
Releases(v0.3)
  • v0.3(Sep 29, 2021)

    This release adds the following improvements

    • AMFClassifier and AMFRegressor can be serialized to files (using internally pickle) using the save and load methods
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Apr 6, 2020)

    This release adds the following improvements

    • SampleCollection pre-allocates more samples instead of the bare minimum for faster computation
    • The playground can be launched from the library
    • A documentation on readthedocs
    • Faster computations and a lot of code cleaning
    • Unittests for python 3.6-3.8
    Source code(tar.gz)
    Source code(zip)
Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogramas anuais com spark, em pyspark e SQL!

Olá! Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogr

Henrique de Paula 10 Apr 04, 2022
Lightning ⚡️ fast forecasting with statistical and econometric models.

Nixtla Statistical ⚡️ Forecast Lightning fast forecasting with statistical and econometric models StatsForecast offers a collection of widely used uni

Nixtla 2.1k Dec 29, 2022
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.

Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp

AutoViz and Auto_ViML 519 Jan 03, 2023
Polyglot Machine Learning example for scraping similar news articles.

Polyglot Machine Learning example for scraping similar news articles In this example, we will see how we can work with Machine Learning applications w

MetaCall 15 Mar 28, 2022
The code from the Machine Learning Bookcamp book and a free course based on the book

The code from the Machine Learning Bookcamp book and a free course based on the book

Alexey Grigorev 5.5k Jan 09, 2023
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validat

The Apache Software Foundation 121 Dec 28, 2022
A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Demand-Forecasting Business Problem A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Ayşe Nur Türkaslan 3 Mar 06, 2022
Bayesian Modeling and Computation in Python

Bayesian Modeling and Computation in Python Open access and Code This repository contains the open access version of the text and the code examples in

Bayesian Modeling and Computation in Python 339 Jan 02, 2023
Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining

**Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining.** S

Sebastian Raschka 4k Dec 30, 2022
Relevance Vector Machine implementation using the scikit-learn API.

scikit-rvm scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API. Quicks

James Ritchie 204 Nov 18, 2022
Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.

Simple but maybe too simple config management through python data classes. We use it for machine learning.

Eren Gölge 67 Nov 29, 2022
Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application

Intel(R) Extension for Scikit-learn* Installation | Documentation | Examples | Support | FAQ With Intel(R) Extension for Scikit-learn you can accelera

Intel Corporation 858 Dec 25, 2022
flexible time-series processing & feature extraction

A corona statistics and information telegram bot.

PreDiCT.IDLab 206 Dec 28, 2022
A high-performance topological machine learning toolbox in Python

giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the G

giotto.ai 632 Dec 29, 2022
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
A Python library for choreographing your machine learning research.

A Python library for choreographing your machine learning research.

AI2 270 Jan 06, 2023
Module for statistical learning, with a particular emphasis on time-dependent modelling

Operating system Build Status Linux/Mac Windows tick tick is a Python 3 module for statistical learning, with a particular emphasis on time-dependent

X - Data Science Initiative 410 Dec 14, 2022
Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python

Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python Overview Bank Jago has attracted investors' attention since the end

Najibulloh Asror 3 Feb 10, 2022
Anytime Learning At Macroscale

On Anytime Learning At Macroscale Learning from sequential data dumps (key) Requirements Python 3.7 Pytorch 1.9.0 Hydra 1.1.0 (pip install hydra-core

Meta Research 8 Mar 29, 2022