CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

Overview

CM-NAS

Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021.

Visible-Infrared person re-identification (VI-ReID) aims to match cross-modality pedestrian images, breaking through the limitation of single-modality person ReID in dark environment. In order to mitigate the impact of large modality discrepancy, existing works manually design various two-stream architectures to separately learn modalityspecific and modality-sharable representations. Such a manual design routine, however, highly depends on massive experiments and empirical practice, which is time consuming and labor intensive. In this paper, we systematically study the manually designed architectures, and identify that appropriately separating Batch Normalization (BN) layers is the key to bring a great boost towards crossmodality matching. Based on this observation, the essential objective is to find the optimal separation scheme for each BN layer. To this end, we propose a novel method, named Cross-Modality Neural Architecture Search (CM-NAS). It consists of a BN-oriented search space in which the standard optimization can be fulfilled subject to the cross-modality task. Equipped with the searched architecture, our method outperforms state-of-the-art counterparts in both two benchmarks, improving the Rank-1/mAP by 6.70%/6.13% on SYSU-MM01 and by 12.17%/11.23% on RegDB.

Requirements

Our experiments are conducted under the following environments:

  • Python 3.7
  • Pytorch == 1.3.1
  • torchvision == 0.4.2

Model Zoo

The searched configurations and the trained models can be downloaded in this link.

Dataset Protocol Rank-1 mAP Protocol Rank-1 mAP Trained Model
SYSU-MM01 All-Single 61.99% 60.02% Indoor-Single 67.01% 72.95% Google Drive
RegDB Vis-to-Inf 84.54% 80.32% Inf-to-Vis 82.57% 78.31% Google Drive

Noet, the results may have some fluctuations caused by random spliting the datasets.

Search

Codes will be released soon.

Train

Before training, please download the searched configurations.

Test

Before testing, please download the searched configurations and the trained models.

License

CM-NAS is released under the Apache License 2.0. Please see the LICENSE file for more information.

Citation

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follows.

@inproceedings{Fu2021CMNAS,
  title     =  {CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification},
  author    =  {Chaoyou Fu, Yibo Hu, Xiang Wu, Hailin Shi, Tao Mei and Ran He},
  booktitle =  {ICCV},
  year      =  {2021}
}

Acknowledgements

This repo is based on the following repo, thank the authors a lot.

Owner
JDAI-CV
JDAI Computer Vision
JDAI-CV
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture

Devendra Chaplot 234 Nov 05, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
tmm_fast is a lightweight package to speed up optical planar multilayer thin-film device computation.

tmm_fast tmm_fast or transfer-matrix-method_fast is a lightweight package to speed up optical planar multilayer thin-film device computation. It is es

26 Dec 11, 2022
WTTE-RNN a framework for churn and time to event prediction

WTTE-RNN Weibull Time To Event Recurrent Neural Network A less hacky machine-learning framework for churn- and time to event prediction. Forecasting p

Egil Martinsson 727 Dec 28, 2022
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Keon Lee 157 Jan 01, 2023
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

Ibai Gorordo 18 Nov 06, 2022
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤

Bubbliiiing 350 Dec 28, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022