Basics of 2D and 3D Human Pose Estimation.

Overview

Human Pose Estimation 101

If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolved, check out these articles I published on 2D Pose Estimation and 3D Pose Estimation

Table of Contents

Basics

  • Defined as the problem of localization of human joints (or) keypoints
  • A rigid body consists of joints and rigid parts. A body with strong articulation is a body with strong contortion.
  • Pose Estimation is the search for a specific pose in space of all articulated poses
  • Number of keypoints varies with dataset - LSP has 14, MPII has 16, 16 are used in Human3.6m
  • Classifed into 2D and 3D Pose Estimation
    • 2D Pose Estimation
    • Estimate a 2D pose (x,y) coordinates for each joint in pixel space from a RGB image
    • 3D Pose Estimation
    • Estimate a 3D pose (x,y,z) coordinates in metric space from a RGB image, or in previous works, data from a RGB-D sensor. (However, research in the past few years is heavily focussed on generating 3D poses from 2D images / 2D videos)

Loss

  • Most commonly used loss function - Mean Squared Error, MSE(Least Squares Loss)
  • This is a regression problem. The model will try to regress to the the correct coordinates, i.e move to the ground truth coordinatate’s in small increments. The model is trained to output continuous coordinates using a Mean Squared Error loss function

Evaluation metrics

Percentage of Correct Parts - PCP

  • A limb is considered detected and a correct part if the distance between the two predicted joint locations and the true limb joint locations is at most half of the limb length (PCP at 0.5 )
  • Measures detection rate of limbs
  • Cons - penalizes shorter limbs
  • Calculation
    • For a specific part, PCP = (No. of correct parts for entire dataset) / (No. of total parts for entire dataset)
    • Take a dataset with 10 images and 1 pose per image. Each pose has 8 parts - ( upper arm, lower arm, upper leg, lower leg ) x2
    • No of upper arms = 10 * 2 = 20
    • No of lower arms = 20
    • No of lower legs = No of upper legs = 20
    • If upper arm is detected correct for 17 out of the 20 upper arms i.e 17 ( 10 right arms and 7 left) → PCP = 17/20 = 85%
  • Higher the better

Percentage of Correct Key-points - PCK

  • Detected joint is considered correct if the distance between the predicted and the true joint is within a certain threshold (threshold varies)
  • [email protected] is when the threshold = 50% of the head bone link
  • [email protected] == Distance between predicted and true joint < 0.2 * torso diameter
  • Sometimes 150 mm is taken as the threshold
  • Head, shoulder, Elbow, Wrist, Hip, Knee, Ankle → Keypoints
  • PCK is used for 2D and 3D (PCK3D)
  • Higher the better

Percentage of Detected Joints - PDJ

  • Detected joint is considered correct if the distance between the predicted and the true joint is within a certain fraction of the torso diameter
  • Alleviates the shorter limb problem since shorter limbs have smaller torsos
  • PDJ at 0.2 → Distance between predicted and true join < 0.2 * torso diameter
  • Typically used for 2D Pose Estimation
  • Higher the better

Mean Per Joint Position Error - MPJPE

  • Per joint position error = Euclidean distance between ground truth and prediction for a joint
  • Mean per joint position error = Mean of per joint position error for all k joints (Typically, k = 16)
  • Calculated after aligning the root joints (typically the pelvis) of the estimated and groundtruth 3D pose.
  • PA MPJPE
    • Procrustes analysis MPJPE.
    • MPJPE calculated after the estimated 3D pose is aligned to the groundtruth by the Procrustes method
    • Procrustes method is simply a similarity transformation
  • Lower the better
  • Used for 3D Pose Estimation

AUC

Important Applications

  • Activity Analysis
  • Human-Computer Interaction (HCI)
  • Virtual Reality
  • Augmented Reality
  • Amazon Go presents an important domain for the application of Human Pose Estimation. Cameras track and recognize people and their actions, for which Pose Estimation is an important component. Entities relying on services that track and measure human activities rely heavily on human Pose Estimation

Informative roadmap on 2D Human Pose Estimation research

Owner
Sudharshan Chandra Babu
Machine Learning Engineer
Sudharshan Chandra Babu
Minimal PyTorch implementation of YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Erik Linder-Norén 6.9k Dec 29, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception, IROS 2021

For academic use only. Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception Ziwei Wang, Liyuan Pan, Yonhon Ng, Zheyu Zhuang and Robert Mahony Th

Ziwei Wang 11 Jan 04, 2023
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

88 Nov 22, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

5 Dec 28, 2021
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022