2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

Overview

TableMASTER-mmocr

Contents

  1. About The Project
  2. Getting Started
  3. Usage
  4. Result
  5. License
  6. Acknowledgements

About The Project

This project presents our 2nd place solution for ICDAR 2021 Competition on Scientific Literature Parsing, Task B. We reimplement our solution by MMOCR,which is an open-source toolbox based on PyTorch. You can click here for more details about this competition. Our original implementation is based on FastOCR (one of our internal toolbox similar with MMOCR).

Method Description

In our solution, we divide the table content recognition task into four sub-tasks: table structure recognition, text line detection, text line recognition, and box assignment. Based on MASTER, we propose a novel table structure recognition architrcture, which we call TableMASTER. The difference between MASTER and TableMASTER will be shown below. You can click here for more details about this solution.

MASTER's architecture

Dependency

Getting Started

Prerequisites

  • Competition dataset PubTabNet, click here for downloading.
  • About PubTabNet, check their github and paper.
  • About the metric TEDS, see github

Installation

  1. Install mmdetection. click here for details.

    # We embed mmdetection-2.11.0 source code into this project.
    # You can cd and install it (recommend).
    cd ./mmdetection-2.11.0
    pip install -v -e .
  2. Install mmocr. click here for details.

    # install mmocr
    cd ./MASTER_mmocr
    pip install -v -e .
  3. Install mmcv-full-1.3.4. click here for details.

    pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
    
    # install mmcv-full-1.3.4 with torch version 1.8.0 cuda_version 10.2
    pip install mmcv-full==1.3.4 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html

Usage

Data preprocess

Run data_preprocess.py to get valid train data. Remember to change the 'raw_img_root' and ‘save_root’ property of PubtabnetParser to your path.

python ./table_recognition/data_preprocess.py

It will about 8 hours to finish parsing 500777 train files. After finishing the train set parsing, change the property of 'split' folder in PubtabnetParser to 'val' and get formatted val data.

Directory structure of parsed train data is :

.
├── StructureLabelAddEmptyBbox_train
│   ├── PMC1064074_007_00.txt
│   ├── PMC1064076_003_00.txt
│   ├── PMC1064076_004_00.txt
│   └── ...
├── recognition_train_img
│   ├── 0
│       ├── PMC1064100_007_00_0.png
│       ├── PMC1064100_007_00_10.png
│       ├── ...
│       └── PMC1064100_007_00_108.png
│   ├── 1
│   ├── ...
│   └── 15
├── recognition_train_txt
│   ├── 0.txt
│   ├── 1.txt
│   ├── ...
│   └── 15.txt
├── structure_alphabet.txt
└── textline_recognition_alphabet.txt

Train

  1. Train text line detection model with PSENet.

    sh ./table_recognition/table_text_line_detection_dist_train.sh

    We don't offer PSENet train data here, you can create the text line annotations by open source label software. In our experiment, we only use 2,500 table images to train our model. It gets a perfect text line detection result on validation set.

  2. Train text-line recognition model with MASTER.

    sh ./table_recognition/table_text_line_recognition_dist_train.sh

    We can get about 30,000,000 text line images from 500,777 training images and 550,000 text line images from 9115 validation images. But we only select 20,000 text line images from 550,000 dataset for evaluatiing after each trainig epoch, to pick up the best text line recognition model.

    Note that our MASTER OCR is directly trained on samples mixed with single-line texts and multiple-line texts.

  3. Train table structure recognition model, with TableMASTER.

    sh ./table_recognition/table_recognition_dist_train.sh

Inference

To get final results, firstly, we need to forward the three up-mentioned models, respectively. Secondly, we merge the results by our matching algorithm, to generate the final HTML code.

  1. Models inference. We do this to speed up the inference.
python ./table_recognition/run_table_inference.py

run_table_inference.py wil call table_inference.py and use multiple gpu devices to do model inference. Before running this script, you should change the value of cfg in table_inference.py .

Directory structure of text line detection and text line recognition inference results are:

# If you use 8 gpu devices to inference, you will get 8 detection results pickle files, one end2end_result pickle files and 8 structure recognition results pickle files. 
.
├── end2end_caches
│   ├── end2end_results.pkl
│   ├── detection_results_0.pkl
│   ├── detection_results_1.pkl
│   ├── ...
│   └── detection_results_7.pkl
├── structure_master_caches
│   ├── structure_master_results_0.pkl
│   ├── structure_master_results_1.pkl
│   ├── ...
│   └── structure_master_results_7.pkl
  1. Merge results.
python ./table_recognition/match.py

After matching, congratulations, you will get final result pickle file.

Get TEDS score

  1. Installation.

    pip install -r ./table_recognition/PubTabNet-master/src/requirements.txt
  2. Get gtVal.json.

    python ./table_recognition/get_val_gt.py
  3. Calcutate TEDS score. Before run this script, modify pred file path and gt file path in mmocr_teds_acc_mp.py

    python ./table_recognition/PubTabNet-master/src/mmocr_teds_acc_mp.py

Result

Text line end2end recognition accuracy

Models Accuracy
PSENet + MASTER 0.9885

Structure recognition accuracy

Model architecture Accuracy
TableMASTER_maxlength_500 0.7808
TableMASTER_ConcatLayer_maxlength_500 0.7821
TableMASTER_ConcatLayer_maxlength_600 0.7799

TEDS score

Models TEDS
PSENet + MASTER + TableMASTER_maxlength_500 0.9658
PSENet + MASTER + TableMASTER_ConcatLayer_maxlength_500 0.9669
PSENet + MASTER + ensemble_TableMASTER 0.9676

In this paper, we reported 0.9684 TEDS score in validation set (9115 samples). The gap between 0.9676 and 0.9684 comes from that we ensemble three text line models in the competition, but here, we only use one model. Of course, hyperparameter tuning will also affect TEDS score.

License

This project is licensed under the MIT License. See LICENSE for more details.

Citations

@article{ye2021pingan,
  title={PingAn-VCGroup's Solution for ICDAR 2021 Competition on Scientific Literature Parsing Task B: Table Recognition to HTML},
  author={Ye, Jiaquan and Qi, Xianbiao and He, Yelin and Chen, Yihao and Gu, Dengyi and Gao, Peng and Xiao, Rong},
  journal={arXiv preprint arXiv:2105.01848},
  year={2021}
}
@article{He2021PingAnVCGroupsSF,
  title={PingAn-VCGroup's Solution for ICDAR 2021 Competition on Scientific Table Image Recognition to Latex},
  author={Yelin He and Xianbiao Qi and Jiaquan Ye and Peng Gao and Yihao Chen and Bingcong Li and Xin Tang and Rong Xiao},
  journal={ArXiv},
  year={2021},
  volume={abs/2105.01846}
}
@article{Lu2021MASTER,
  title={{MASTER}: Multi-Aspect Non-local Network for Scene Text Recognition},
  author={Ning Lu and Wenwen Yu and Xianbiao Qi and Yihao Chen and Ping Gong and Rong Xiao and Xiang Bai},
  journal={Pattern Recognition},
  year={2021}
}
@article{li2018shape,
  title={Shape robust text detection with progressive scale expansion network},
  author={Li, Xiang and Wang, Wenhai and Hou, Wenbo and Liu, Ruo-Ze and Lu, Tong and Yang, Jian},
  journal={arXiv preprint arXiv:1806.02559},
  year={2018}
}

Acknowledgements

Owner
Jianquan Ye
Jianquan Ye
Script utilizando OpenCV e modelo Machine Learning para detectar o uso de máscaras.

Reconhecendo máscaras Este repositório contém um script em Python3 que reconhece se um rosto está ou não portando uma máscara! O código utiliza da bib

Maria Eduarda de Azevedo Silva 168 Oct 20, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
Official implementation of our paper "Learning to Bootstrap for Combating Label Noise"

Learning to Bootstrap for Combating Label Noise This repo is the official implementation of our paper "Learning to Bootstrap for Combating Label Noise

21 Apr 09, 2022
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
Deep Surface Reconstruction from Point Clouds with Visibility Information

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

Raphael Sulzer 23 Jan 04, 2023
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023