Pre-training of Graph Augmented Transformers for Medication Recommendation

Related tags

Deep LearningG-Bert
Overview

G-Bert

Pre-training of Graph Augmented Transformers for Medication Recommendation

Intro

G-Bert combined the power of Graph Neural Networks and BERT (Bidirectional Encoder Representations from Transformers) for medical code representation and medication recommendation. We use the graph neural networks (GNNs) to represent the structure information of medical codes from a medical ontology. Then we integrate the GNN representation into a transformer-based visit encoder and pre-train it on single-visit EHR data. The pre-trained visit encoder and representation can be fine-tuned for downstream medical prediction tasks. Our model is the first to bring the language model pre-training schema into the healthcare domain and it achieved state-of-the-art performance on the medication recommendation task.

Requirements

  • pytorch>=0.4
  • python>=3.5
  • torch_geometric==1.0.3

Guide

We list the structure of this repo as follows:

.
├── [4.0K]  code/
│   ├── [ 13K]  bert_models.py % transformer models
│   ├── [5.9K]  build_tree.py % build ontology
│   ├── [4.3K]  config.py % hyperparameters for G-Bert
│   ├── [ 11K]  graph_models.py % GAT models
│   ├── [   0]  __init__.py
│   ├── [9.8K]  predictive_models.py % G-Bert models
│   ├── [ 721]  run_alternative.sh % script to train G-Bert
│   ├── [ 19K]  run_gbert.py % fine tune G-Bert
│   ├── [ 19K]  run_gbert_side.py
│   ├── [ 18K]  run_pretraining.py % pre-train G-Bert
│   ├── [4.4K]  run_tsne.py # output % save embedding for tsne visualization
│   └── [4.7K]  utils.py
├── [4.0K]  data/
│   ├── [4.9M]  data-multi-side.pkl 
│   ├── [3.6M]  data-multi-visit.pkl % patients data with multi-visit
│   ├── [4.3M]  data-single-visit.pkl % patients data with singe-visit
│   ├── [ 11K]  dx-vocab-multi.txt % diagnosis codes vocabulary in multi-visit data
│   ├── [ 11K]  dx-vocab.txt % diagnosis codes vocabulary in all data
│   ├── [ 29K]  EDA.ipynb % jupyter version to preprocess data
│   ├── [ 18K]  EDA.py % python version to preprocess data
│   ├── [6.2K]  eval-id.txt % validation data ids
│   ├── [6.9K]  px-vocab-multi.txt % procedure codes vocabulary in multi-visit data
│   ├── [ 725]  rx-vocab-multi.txt % medication codes vocabulary in multi-visit data
│   ├── [2.6K]  rx-vocab.txt % medication codes vocabulary in all data
│   ├── [6.2K]  test-id.txt % test data ids
│   └── [ 23K]  train-id.txt % train data ids
└── [4.0K]  saved/
    └── [4.0K]  GBert-predict/ % model files to reproduce our result
        ├── [ 371]  bert_config.json 
        └── [ 12M]  pytorch_model.bin

Preprocessing Data

We have released the preprocessing codes named data/EDA.ipynb to process data using raw files from MIMIC-III dataset. You can download data files from MIMIC and get necessary mapping files from GAMENet.

Quick Test

To validate the performance of G-Bert, you can run the following script since we have provided the trained model binary file and well-preprocessed data.

cd code/
python run_gbert.py --model_name GBert-predict --use_pretrain --pretrain_dir ../saved/GBert-predict --graph

Cite

Please cite our paper if you find this code helpful:

@article{shang2019pre,
  title={Pre-training of Graph Augmented Transformers for Medication Recommendation},
  author={Shang, Junyuan and Ma, Tengfei and Xiao, Cao and Sun, Jimeng},
  journal={arXiv preprint arXiv:1906.00346},
  year={2019}
}

Acknowledgement

Many thanks to the open source repositories and libraries to speed up our coding progress.

Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstract Object detection aims to locate and classify object instances in ima

IM Lab., POSTECH 0 Sep 28, 2022
CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation

CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation We propose a novel approach to translate unpaired contrast computed

Nicolae Catalin Ristea 13 Jan 02, 2023
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
[ACM MM 2021] Yes, "Attention is All You Need", for Exemplar based Colorization

Transformer for Image Colorization This is an implemention for Yes, "Attention Is All You Need", for Exemplar based Colorization, and the current soft

Wang Yin 30 Dec 07, 2022
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022