Zero-Cost Proxies for Lightweight NAS

Overview

Zero-Cost-NAS

Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS
tl;dr A single minibatch of data is used to score neural networks for NAS instead of performing full training.

In this README, we provide:

If you have any questions, please open an issue or email us. (last update: 02.02.2021)

Summary

Intro. To perform neural architecture search (NAS), deep neural networks (DNNs) are typically trained until a final validation accuracy is computed and used to compare DNNs to each other and select the best one. However, this is time-consuming because training takes multiple GPU-hours/days/weeks. This is why a proxy for final accuracy is often used to speed up NAS. Typically, this proxy is a reduced form of training (e.g. EcoNAS) where the number of epochs is reduced, a smaller model is used or the training data is subsampled.

Proxies. Instead, we propose a series of "zero-cost" proxies that use a single-minibatch of data to score a DNN. These metrics are inspired by recent pruning-at-initialization literature, but are adapted to score an entire DNN and work within a NAS setting. When compared against econas (see orange pentagon in plot below), our zero-cost metrics take ~1000X less time to run but are better-correlated with final validation accuracy (especially synflow and jacob_cov), making them better (and much cheaper!) proxies for use within NAS. Even when EcoNAS is tuned specifically for NAS-Bench-201 (see econas+ purple circle in the plot), our vote zero-cost proxy is still better-correlated and is 3 orders of magnitude cheaper to compute.

Figure 1: Correlation of validation accuracy to final accuracy during the first 12 epochs of training (blue line) for three CIFAR-10 on the NAS-Bench-201 search space. Zero-cost and EcoNAS proxies are also labeled for comparison.

zero-cost vs econas

Zero-Cost NAS We use the zero-cost metrics to enhance 4 existing NAS algorithms, and we test it out on 3 different NAS benchmarks. For all cases, we achieve a new SOTA (state of the art result) in terms of search speed. We incorporate zero-cost proxies in two ways: (1) warmup: Use proxies to initialize NAS algorithms, (2) move proposal: Use proxies to improve the selection of the next model for evaluation. As Figure 2 shows, there is a significant speedup to all evaluated NAS algorithms.

Figure 2: Zero-Cost warmup and move proposal consistently improves speed and accuracy of 4 different NAS algorithms.

Zero-Cost-NAS speedup

For more details, please take a look at our paper!

Running the Code

  • Install PyTorch for your system (v1.5.0 or later).
  • Install the package: pip install . (add -e for editable mode) -- note that all dependencies other than pytorch will be automatically installed.

API

The main function is find_measures below. Given a neural net and some information about the input data (dataloader) and loss function (loss_fn) it returns an array of zero-cost proxy metrics.

def find_measures(net_orig,                  # neural network
                  dataloader,                # a data loader (typically for training data)
                  dataload_info,             # a tuple with (dataload_type = {random, grasp}, number_of_batches_for_random_or_images_per_class_for_grasp, number of classes)
                  device,                    # GPU/CPU device used
                  loss_fn=F.cross_entropy,   # loss function to use within the zero-cost metrics
                  measure_names=None,        # an array of measure names to compute, if left blank, all measures are computed by default
                  measures_arr=None):        # [not used] if the measures are already computed but need to be summarized, pass them here

The available zero-cost metrics are in the measures directory. You can add new metrics by simply following one of the examples then registering the metric in the load_all function. More examples of how to use this function can be found in the code to reproduce results (below). You can also modify data loading functions in p_utils.py

Reproducing Results

NAS-Bench-201

  1. Download the NAS-Bench-201 dataset and put in the data directory in the root folder of this project.
  2. Run python nasbench2_pred.py with the appropriate cmd-line options -- a pickle file is produced with zero-cost metrics (see notebooks folder on how to use the pickle file.
  3. Note that you need to manually download ImageNet16 and put in _datasets/ImageNet16 directory in the root folder. CIFAR-10/100 will be automatically downloaded.

NAS-Bench-101

  1. Download the data directory and save it to the root folder of this repo. This contains pre-cached info from the NAS-Bench-101 repo.
  2. [Optional] Download the NAS-Bench-101 dataset and put in the data directory in the root folder of this project and also clone the NAS-Bench-101 repo and install the package.
  3. Run python nasbench1_pred.py. Note that this takes a long time to go through ~400k architectures, but precomputed results are in the notebooks folder (with a link to the results).

PyTorchCV

  1. Run python ptcv_pred.py

NAS-Bench-ASR

Coming soon...

NAS with Zero-Cost Proxies

For the full list of NAS algorithms in our paper, we used a different NAS tool which is not publicly released. However, we included a notebook nas_examples.ipynb to show how to use zero-cost proxies to speed up aging evolution and random search methods using both warmup and move proposal.

Citation

@inproceedings{
  abdelfattah2021zerocost,
  title={{Zero-Cost Proxies for Lightweight NAS}},
  author={Mohamed S. Abdelfattah and Abhinav Mehrotra and {\L}ukasz Dudziak and Nicholas D. Lane},
  booktitle={International Conference on Learning Representations (ICLR)},
  year={2021}
}
Owner
SamsungLabs
SAMSUNG
SamsungLabs
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
ESP32 python application to read data from a Tilt™ Hydrometer for homebrewing

TitlESP32 ESP32 MicroPython application to read and log data from a Tilt™ Hydrometer. Requirements A board with an ESP32 chip USB cable - USB A / micr

IoBeer 5 Dec 01, 2022
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
Self-describing JSON-RPC services made easy

ReflectRPC Self-describing JSON-RPC services made easy Contents What is ReflectRPC? Installation Features Datatypes Custom Datatypes Returning Errors

Andreas Heck 31 Jul 16, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022