Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

Related tags

Deep LearningVOLT
Overview

**Codebase and data are uploaded in progress. **

VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly generate a vocabulary with suitable granularity for machine translation.

What's New:

  • July 2021: Support En-De translation, TED bilingual translation, and multilingual translation.
  • July 2021: Support subword-nmt tokenization.
  • July 2021: Support sentencepiece tokenization.

What's On-going:

  • Add translation training/evaluation codes.
  • Support classification tasks.
  • Support pip usage.

Features:

  • Efficient: CPU learning on one machine.
  • Simple: The core code is no more than 200 lines.
  • Easy-to-use: Support widely-used tokenization toolkits,subword-nmt and sentencepiece.
  • Flexible: User can customize their own tokenization rules.

Requirements and Installation

The required environments:

  • python 3.0
  • tqdm
  • mosedecoder
  • subword-nmt

To use VOLT and develop locally:

git clone https://github.com/Jingjing-NLP/VOLT/
cd VOLT
git clone https://github.com/moses-smt/mosesdecoder
git clone https://github.com/rsennrich/subword-nmt
pip3 install sentencepiece
pip3 install tqdm 

Usage

  • The first step is to get vocabulary candidates and tokenized texts. The sub-word vocabulary can be generated by subword-nmt and sentencepiece. Here are two examples:

    
    #Assume source_data is the file stroing data in the source language
    #Assume target_data is the file stroing data in the target language
    BPEROOT=subword-nmt
    size=30000 # the size of BPE
    cat source_data > training_data
    cat target_data >> training_data
    
    #subword-nmt style:
    mkdir bpeoutput
    BPE_CODE=code # the path to save vocabulary
    python3 $BPEROOT/learn_bpe.py -s $size  < training_data > $BPE_CODE
    python3 $BPEROOT/apply_bpe.py -c $BPE_CODE < source_file > bpeoutput/source.file
    python3 $BPEROOT/apply_bpe.py -c $BPE_CODE < target_file > bpeoutput/source.file
    
    #sentencepiece style:
    mkdir spmout
    python3 spm/spm_train.py --input=training_data --model_prefix=spm --vocab_size=$size --character_coverage=1.0 --model_type=bpe
    #After this step, you will see spm.vocab and spm.model
    python3 spm/spm_encoder.py --model spm.model --inputs source_data --outputs spmout/source_data --output_format piece
    python3 spm/spm_encoder.py --model spm.model --inputs target_data --outputs spmout/target_data --output_format piece
    
  • The second step is to run VOLT scripts. It accepts the following parameters:

    • --source_file: the file storing data in the source language.
    • --target_file: the file storing data in the target language.
    • --token_candidate_file: the file storing token candidates.
    • --max_number: the maximum size of the vocabulary generated by VOLT.
    • --interval: the search granularity in VOLT.
    • --loop_in_ot: the maximum interation loop in sinkhorn solution.
    • --tokenizer: which toolkit you use to get vocabulary. Only subword-nmt and sentencepiece are supported.
    • --size_file: the file to store the vocabulary size generated by VOLT.
    • --threshold: the threshold to decide which tokens are added into the final vocabulary from the optimal matrix. Less threshold means that less token candidates are dropped.
    #subword-nmt style
    python3 ../ot_run.py --source_file bpeoutput/source.file --target_file bpeoutput/target.file \
              --token_candidate_file $BPE_CODE \
              --vocab_file bpeoutput/vocab --max_number 10000 --interval 1000  --loop_in_ot 500 --tokenizer subword-nmt --size_file bpeoutput/size 
    #sentencepiece style
    python3 ../ot_run.py --source_file spmoutput/source.file --target_file spmoutput/target.file \
              --token_candidate_file $BPE_CODE \
              --vocab_file spmoutput/vocab --max_number 10000 --interval 1000  --loop_in_ot 500 --tokenizer sentencepiece --size_file spmoutput/size 
    
  • The third step is to use the generated vocabulary to tokenize your texts:

      #for subword-nmt toolkit
      python3 $BPEROOT/apply_bpe.py -c bpeoutput/vocab < source_file > bpeoutput/source.file
      python3 $BPEROOT/apply_bpe.py -c bpeoutput/vocab < target_file > bpeoutput/source.file
    
      #for sentencepiece toolkit, here we only keep the optimal size
      best_size=$(cat spmoutput/size)
      python3 spm/spm_train.py --input=training_data --model_prefix=spm --vocab_size=$best_size --character_coverage=1.0 --model_type=bpe
    
      #After this step, you will see spm.vocab and spm.model
      python3 spm/spm_encoder.py --model spm.model --inputs source_data --outputs spmout/source_data --output_format piece
      python3 spm/spm_encoder.py --model spm.model --inputs target_data --outputs spmout/target_data --output_format piece
    

Examples

We have given several examples in path "examples/".

Datasets

The WMT-14 En-de translation data can be downloaed via the running scripts.

For TED, you can download at TED.

Citation

Please cite as:

@inproceedings{volt,
  title = {Vocabulary Learning via Optimal Transport for Neural Machine Translation},
  author= {Jingjing Xu and
               Hao Zhou and
               Chun Gan and
               Zaixiang Zheng and
               Lei Li},
  booktitle = {Proceedings of ACL 2021},
  year = {2021},
}
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
This is an official pytorch implementation of Fast Fourier Convolution.

Fast Fourier Convolution (FFC) for Image Classification This is the official code of Fast Fourier Convolution for image classification on ImageNet. Ma

pkumi 199 Jan 03, 2023
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Consistent Depth of Moving Objects in Video This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in

Google 203 Jan 05, 2023
Code for "Learning to Segment Rigid Motions from Two Frames".

rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.

Gengshan Yang 157 Nov 21, 2022
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize over continuous domains by Brandon Amos

Tutorial on Amortized Optimization This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize

Meta Research 144 Dec 26, 2022
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022