Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

Related tags

Deep LearningVOLT
Overview

**Codebase and data are uploaded in progress. **

VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly generate a vocabulary with suitable granularity for machine translation.

What's New:

  • July 2021: Support En-De translation, TED bilingual translation, and multilingual translation.
  • July 2021: Support subword-nmt tokenization.
  • July 2021: Support sentencepiece tokenization.

What's On-going:

  • Add translation training/evaluation codes.
  • Support classification tasks.
  • Support pip usage.

Features:

  • Efficient: CPU learning on one machine.
  • Simple: The core code is no more than 200 lines.
  • Easy-to-use: Support widely-used tokenization toolkits,subword-nmt and sentencepiece.
  • Flexible: User can customize their own tokenization rules.

Requirements and Installation

The required environments:

  • python 3.0
  • tqdm
  • mosedecoder
  • subword-nmt

To use VOLT and develop locally:

git clone https://github.com/Jingjing-NLP/VOLT/
cd VOLT
git clone https://github.com/moses-smt/mosesdecoder
git clone https://github.com/rsennrich/subword-nmt
pip3 install sentencepiece
pip3 install tqdm 

Usage

  • The first step is to get vocabulary candidates and tokenized texts. The sub-word vocabulary can be generated by subword-nmt and sentencepiece. Here are two examples:

    
    #Assume source_data is the file stroing data in the source language
    #Assume target_data is the file stroing data in the target language
    BPEROOT=subword-nmt
    size=30000 # the size of BPE
    cat source_data > training_data
    cat target_data >> training_data
    
    #subword-nmt style:
    mkdir bpeoutput
    BPE_CODE=code # the path to save vocabulary
    python3 $BPEROOT/learn_bpe.py -s $size  < training_data > $BPE_CODE
    python3 $BPEROOT/apply_bpe.py -c $BPE_CODE < source_file > bpeoutput/source.file
    python3 $BPEROOT/apply_bpe.py -c $BPE_CODE < target_file > bpeoutput/source.file
    
    #sentencepiece style:
    mkdir spmout
    python3 spm/spm_train.py --input=training_data --model_prefix=spm --vocab_size=$size --character_coverage=1.0 --model_type=bpe
    #After this step, you will see spm.vocab and spm.model
    python3 spm/spm_encoder.py --model spm.model --inputs source_data --outputs spmout/source_data --output_format piece
    python3 spm/spm_encoder.py --model spm.model --inputs target_data --outputs spmout/target_data --output_format piece
    
  • The second step is to run VOLT scripts. It accepts the following parameters:

    • --source_file: the file storing data in the source language.
    • --target_file: the file storing data in the target language.
    • --token_candidate_file: the file storing token candidates.
    • --max_number: the maximum size of the vocabulary generated by VOLT.
    • --interval: the search granularity in VOLT.
    • --loop_in_ot: the maximum interation loop in sinkhorn solution.
    • --tokenizer: which toolkit you use to get vocabulary. Only subword-nmt and sentencepiece are supported.
    • --size_file: the file to store the vocabulary size generated by VOLT.
    • --threshold: the threshold to decide which tokens are added into the final vocabulary from the optimal matrix. Less threshold means that less token candidates are dropped.
    #subword-nmt style
    python3 ../ot_run.py --source_file bpeoutput/source.file --target_file bpeoutput/target.file \
              --token_candidate_file $BPE_CODE \
              --vocab_file bpeoutput/vocab --max_number 10000 --interval 1000  --loop_in_ot 500 --tokenizer subword-nmt --size_file bpeoutput/size 
    #sentencepiece style
    python3 ../ot_run.py --source_file spmoutput/source.file --target_file spmoutput/target.file \
              --token_candidate_file $BPE_CODE \
              --vocab_file spmoutput/vocab --max_number 10000 --interval 1000  --loop_in_ot 500 --tokenizer sentencepiece --size_file spmoutput/size 
    
  • The third step is to use the generated vocabulary to tokenize your texts:

      #for subword-nmt toolkit
      python3 $BPEROOT/apply_bpe.py -c bpeoutput/vocab < source_file > bpeoutput/source.file
      python3 $BPEROOT/apply_bpe.py -c bpeoutput/vocab < target_file > bpeoutput/source.file
    
      #for sentencepiece toolkit, here we only keep the optimal size
      best_size=$(cat spmoutput/size)
      python3 spm/spm_train.py --input=training_data --model_prefix=spm --vocab_size=$best_size --character_coverage=1.0 --model_type=bpe
    
      #After this step, you will see spm.vocab and spm.model
      python3 spm/spm_encoder.py --model spm.model --inputs source_data --outputs spmout/source_data --output_format piece
      python3 spm/spm_encoder.py --model spm.model --inputs target_data --outputs spmout/target_data --output_format piece
    

Examples

We have given several examples in path "examples/".

Datasets

The WMT-14 En-de translation data can be downloaed via the running scripts.

For TED, you can download at TED.

Citation

Please cite as:

@inproceedings{volt,
  title = {Vocabulary Learning via Optimal Transport for Neural Machine Translation},
  author= {Jingjing Xu and
               Hao Zhou and
               Chun Gan and
               Zaixiang Zheng and
               Lei Li},
  booktitle = {Proceedings of ACL 2021},
  year = {2021},
}
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
Realistic lighting in ursina!

Ursina Lighting Realistic lighting in ursina! If you want to have realistic lighting in ursina, import the UrsinaLighting.py in your project and use t

17 Jul 07, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023
Supervised Classification from Text (P)

MSc-Thesis Module: Masters Research Thesis Language: Python Grade: 75 Title: An investigation of supervised classification of therapeutic process from

Matthew Laws 1 Nov 22, 2021
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Machine learning library for fast and efficient Gaussian mixture models

This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz

Omar Oubari 1 Dec 19, 2022
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

445 Jan 02, 2023
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Vertex AI: Serverless framework for MLOPs (ESP / ENG) Español Qué es esto? Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflo

Hernán Escudero 2 Apr 28, 2022
NLMpy - A Python package to create neutral landscape models

NLMpy is a Python package for the creation of neutral landscape models that are widely used by landscape ecologists to model ecological patterns

Manaaki Whenua – Landcare Research 1 Oct 08, 2022
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
DockStream: A Docking Wrapper to Enhance De Novo Molecular Design

DockStream Description DockStream is a docking wrapper providing access to a collection of ligand embedders and docking backends. Docking execution an

AstraZeneca - Molecular AI 72 Jan 02, 2023