Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

Related tags

Deep LearningVOLT
Overview

**Codebase and data are uploaded in progress. **

VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly generate a vocabulary with suitable granularity for machine translation.

What's New:

  • July 2021: Support En-De translation, TED bilingual translation, and multilingual translation.
  • July 2021: Support subword-nmt tokenization.
  • July 2021: Support sentencepiece tokenization.

What's On-going:

  • Add translation training/evaluation codes.
  • Support classification tasks.
  • Support pip usage.

Features:

  • Efficient: CPU learning on one machine.
  • Simple: The core code is no more than 200 lines.
  • Easy-to-use: Support widely-used tokenization toolkits,subword-nmt and sentencepiece.
  • Flexible: User can customize their own tokenization rules.

Requirements and Installation

The required environments:

  • python 3.0
  • tqdm
  • mosedecoder
  • subword-nmt

To use VOLT and develop locally:

git clone https://github.com/Jingjing-NLP/VOLT/
cd VOLT
git clone https://github.com/moses-smt/mosesdecoder
git clone https://github.com/rsennrich/subword-nmt
pip3 install sentencepiece
pip3 install tqdm 

Usage

  • The first step is to get vocabulary candidates and tokenized texts. The sub-word vocabulary can be generated by subword-nmt and sentencepiece. Here are two examples:

    
    #Assume source_data is the file stroing data in the source language
    #Assume target_data is the file stroing data in the target language
    BPEROOT=subword-nmt
    size=30000 # the size of BPE
    cat source_data > training_data
    cat target_data >> training_data
    
    #subword-nmt style:
    mkdir bpeoutput
    BPE_CODE=code # the path to save vocabulary
    python3 $BPEROOT/learn_bpe.py -s $size  < training_data > $BPE_CODE
    python3 $BPEROOT/apply_bpe.py -c $BPE_CODE < source_file > bpeoutput/source.file
    python3 $BPEROOT/apply_bpe.py -c $BPE_CODE < target_file > bpeoutput/source.file
    
    #sentencepiece style:
    mkdir spmout
    python3 spm/spm_train.py --input=training_data --model_prefix=spm --vocab_size=$size --character_coverage=1.0 --model_type=bpe
    #After this step, you will see spm.vocab and spm.model
    python3 spm/spm_encoder.py --model spm.model --inputs source_data --outputs spmout/source_data --output_format piece
    python3 spm/spm_encoder.py --model spm.model --inputs target_data --outputs spmout/target_data --output_format piece
    
  • The second step is to run VOLT scripts. It accepts the following parameters:

    • --source_file: the file storing data in the source language.
    • --target_file: the file storing data in the target language.
    • --token_candidate_file: the file storing token candidates.
    • --max_number: the maximum size of the vocabulary generated by VOLT.
    • --interval: the search granularity in VOLT.
    • --loop_in_ot: the maximum interation loop in sinkhorn solution.
    • --tokenizer: which toolkit you use to get vocabulary. Only subword-nmt and sentencepiece are supported.
    • --size_file: the file to store the vocabulary size generated by VOLT.
    • --threshold: the threshold to decide which tokens are added into the final vocabulary from the optimal matrix. Less threshold means that less token candidates are dropped.
    #subword-nmt style
    python3 ../ot_run.py --source_file bpeoutput/source.file --target_file bpeoutput/target.file \
              --token_candidate_file $BPE_CODE \
              --vocab_file bpeoutput/vocab --max_number 10000 --interval 1000  --loop_in_ot 500 --tokenizer subword-nmt --size_file bpeoutput/size 
    #sentencepiece style
    python3 ../ot_run.py --source_file spmoutput/source.file --target_file spmoutput/target.file \
              --token_candidate_file $BPE_CODE \
              --vocab_file spmoutput/vocab --max_number 10000 --interval 1000  --loop_in_ot 500 --tokenizer sentencepiece --size_file spmoutput/size 
    
  • The third step is to use the generated vocabulary to tokenize your texts:

      #for subword-nmt toolkit
      python3 $BPEROOT/apply_bpe.py -c bpeoutput/vocab < source_file > bpeoutput/source.file
      python3 $BPEROOT/apply_bpe.py -c bpeoutput/vocab < target_file > bpeoutput/source.file
    
      #for sentencepiece toolkit, here we only keep the optimal size
      best_size=$(cat spmoutput/size)
      python3 spm/spm_train.py --input=training_data --model_prefix=spm --vocab_size=$best_size --character_coverage=1.0 --model_type=bpe
    
      #After this step, you will see spm.vocab and spm.model
      python3 spm/spm_encoder.py --model spm.model --inputs source_data --outputs spmout/source_data --output_format piece
      python3 spm/spm_encoder.py --model spm.model --inputs target_data --outputs spmout/target_data --output_format piece
    

Examples

We have given several examples in path "examples/".

Datasets

The WMT-14 En-de translation data can be downloaed via the running scripts.

For TED, you can download at TED.

Citation

Please cite as:

@inproceedings{volt,
  title = {Vocabulary Learning via Optimal Transport for Neural Machine Translation},
  author= {Jingjing Xu and
               Hao Zhou and
               Chun Gan and
               Zaixiang Zheng and
               Lei Li},
  booktitle = {Proceedings of ACL 2021},
  year = {2021},
}
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
Code release for "Making a Bird AI Expert Work for You and Me".

Making-a-Bird-AI-Expert-Work-for-You-and-Me Code release for "Making a Bird AI Expert Work for You and Me". arxiv (Coming soon...) Changelog 2021/12/6

PRIS-CV: Computer Vision Group 11 Dec 11, 2022
Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

Dimitri Yanovsky 6 Oct 08, 2022
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
A novel pipeline framework for multi-hop complex KGQA task. About the paper title: Improving Multi-hop Embedded Knowledge Graph Question Answering by Introducing Relational Chain Reasoning

Rce-KGQA A novel pipeline framework for multi-hop complex KGQA task. This framework mainly contains two modules, answering_filtering_module and relati

金伟强 -上海大学人工智能小渣渣~ 16 Nov 18, 2022
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022