[CVPR2021] Invertible Image Signal Processing

Overview

Invertible Image Signal Processing

Python 3.6 pytorch 1.4.0

This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)".

Figure: Our framework

Unprocessed RAW data is a highly valuable image format for image editing and computer vision. However, since the file size of RAW data is huge, most users can only get access to processed and compressed sRGB images. To bridge this gap, we design an Invertible Image Signal Processing (InvISP) pipeline, which not only enables rendering visually appealing sRGB images but also allows recovering nearly perfect RAW data. Due to our framework's inherent reversibility, we can reconstruct realistic RAW data instead of synthesizing RAW data from sRGB images, without any memory overhead. We also integrate a differentiable JPEG compression simulator that empowers our framework to reconstruct RAW data from JPEG images. Extensive quantitative and qualitative experiments on two DSLR demonstrate that our method obtains much higher quality in both rendered sRGB images and reconstructed RAW data than alternative methods.

Invertible Image Signal Processing
Yazhou Xing*, Zian Qian*, Qifeng Chen (* indicates joint first authors)
HKUST

[Paper] [Project Page] [Technical Video (Coming soon)]

Figure: Our results

Installation

Clone this repo.

git clone https://github.com/yzxing87/Invertible-ISP.git 
cd Invertible-ISP/

We have tested our code on Ubuntu 18.04 LTS with PyTorch 1.4.0, CUDA 10.1 and cudnn7.6.5. Please install dependencies by

conda env create -f environment.yml

Preparing datasets

We use MIT-Adobe FiveK Dataset for training and evaluation. To reproduce our results, you need to first download the NIKON D700 and Canon EOS 5D subsets from their website. The images (DNG) can be downloaded by

cd data/
bash data_preprocess.sh

The downloading may take a while. After downloading, we need to prepare the bilinearly demosaiced RAW and white balance parameters as network input, and ground truth sRGB (in JPEG format) as supervision.

python data_preprocess.py --camera="NIKON_D700"
python data_preprocess.py --camera="Canon_EOS_5D"

The dataset will be organized into

Path Size Files Format Description
data 585 GB 1 Main folder
├  Canon_EOS_5D 448 GB 1 Canon sub-folder
├  NIKON_D700 137 GB 1 NIKON sub-folder
    ├  DNG 2.9 GB 487 DNG In-the-wild RAW.
    ├  RAW 133 GB 487 NPZ Preprocessed RAW.
    ├  RGB 752 MB 487 JPG Ground-truth RGB.
├  NIKON_D700_train.txt 1 KB 1 TXT Training data split.
├  NIKON_D700_test.txt 5 KB 1 TXT Test data split.

Training networks

We specify the training arguments into train.sh. Simply run

cd ../
bash train.sh

The checkpoints will be saved into ./exps/{exp_name}/checkpoint/.

Test and evaluation

To reconstruct the RAW from JPEG RGB, we need to first save the rendered RGB into disk then do test to recover RAW. Original RAW images are too huge to be directly tested on one 2080 Ti GPU. We provide two ways to test the model.

  1. Subsampling the RAW for visualization purpose:
python test_rgb.py --task=EXPERIMENT_NAME \
                --data_path="./data/" \
                --gamma \
                --camera=CAMERA_NAME \
                --out_path=OUTPUT_PATH \
                --ckpt=CKPT_PATH

After finish, run

python test_raw.py --task=EXPERIMENT_NAME \
                --data_path="./data/" \
                --gamma \
                --camera=CAMERA_NAME \
                --out_path=OUTPUT_PATH \
                --ckpt=CKPT_PATH
  1. Spliting the RAW data into patches, for quantitatively evaluation purpose. Turn on the --split_to_patch argument. See test.sh. The PSNR and SSIM metrics can be obtained by
python cal_metrics.py --path=PATH_TO_SAVED_PATCHES

Citation

@inproceedings{xing21invertible,
  title     = {Invertible Image Signal Processing},
  author    = {Xing, Yazhou and Qian, Zian and Chen, Qifeng},
  booktitle = {CVPR},
  year      = {2021}
}

Acknowledgement

Part of the codes benefit from DiffJPEG and Invertible-Image-Rescaling.

Contact

Free feel to contact me if there is any question. (Yazhou Xing, [email protected])

Owner
Yazhou XING
Ph.D. Candidate at HKUST CSE
Yazhou XING
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 05, 2023
RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

BigData Lab @USTC 中科大大数据实验室 10 Oct 16, 2022
Vision-Language Pre-training for Image Captioning and Question Answering

VLP This repo hosts the source code for our AAAI2020 work Vision-Language Pre-training (VLP). We have released the pre-trained model on Conceptual Cap

Luowei Zhou 373 Jan 03, 2023
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0

Andrew Davison 0 Jan 06, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022