TF Image Segmentation: Image Segmentation framework

Overview

TF Image Segmentation: Image Segmentation framework

The aim of the TF Image Segmentation framework is to provide/provide a simplified way for:

  • Converting some popular general/medical/other Image Segmentation Datasets into easy-to-use for training .tfrecords format with unified interface: different datasets but same way to store images and annotations.
  • Training routine with on-the-fly data augmentation (scaling, color distortion).
  • Training routine that is proved to work for particular model/dataset pair.
  • Evaluating Accuracy of trained models with common accuracy measures: Mean IOU, Mean pix. accuracy, Pixel accuracy.
  • Model files that were trained on a particular dataset with reported accuracy (models that were trained using TF with reported training routine and not models that were converted from Caffe or other framework)
  • Model definitions (like FCN-32s and others) that use weights initializations from Image Classification models like VGG that are officially provided by TF-Slim library.

So far, the framework contains an implementation of the FCN models (training and evaluation) in Tensorflow and TF-Slim library with training routine, reported accuracy, trained models for PASCAL VOC 2012 dataset. To train these models on your data, convert your dataset to tfrecords and follow the instructions below.

The end goal is to provide utilities to convert other datasets, report accuracies on them and provide models.

Installation

This code requires:

  1. Tensorflow r0.12 or later version.

  2. Custom tensorflow/models repository, which might be merged in a future.

Simply run:

git clone -b fully_conv_vgg https://github.com/warmspringwinds/models

And add models/slim subdirectory to your path:

import sys
# update with your path
sys.path.append('/home/dpakhom1/workspace/models/slim/')
  1. Some libraries which can be acquired by installing Anaconda package.

Or you can install scikit-image, matplotlib, numpy using pip.

  1. VGG 16 checkpoint file, which you can get from here.

  2. Clone this library:

git clone https://github.com/warmspringwinds/tf-image-segmentation

And add it to the path:

import sys
# update with your path
sys.path.append("/home/dpakhom1/tf_projects/segmentation/tf-image-segmentation/")

PASCAL VOC 2012

Implemented models were tested on Restricted PASCAL VOC 2012 Validation dataset (RV-VOC12) and trained on the PASCAL VOC 2012 Training data and additional Berkeley segmentation data for PASCAL VOC 12. It was important to test models on restricted Validation dataset to make sure no images in the validation dataset were seen by model during training.

The code to acquire the training and validating the model is also provided in the framework.

Fully Convolutional Networks for Semantic Segmentation (FCNs)

Here you can find models that were described in the paper "Fully Convolutional Networks for Semantic Segmentation" by Long et al. We trained and tested FCN-32s, FCN-16s and FCN-8s against PASCAL VOC 2012 dataset.

You can find all the scripts that were used for training and evaluation here.

This code has been used to train networks with this performance:

Model Test data Mean IOU Mean pix. accuracy Pixel accuracy Model Download Link
FCN-32s (ours) RV-VOC12 62.70 in prog. in prog. Dropbox
FCN-16s (ours) RV-VOC12 63.52 in prog. in prog. Dropbox
FCN-8s (ours) RV-VOC12 63.65 in prog. in prog. Dropbox
FCN-32s (orig.) RV-VOC11 59.40 73.30 89.10
FCN-16s (orig.) RV-VOC11 62.40 75.70 90.00
FCN-8s (orig.) RV-VOC11 62.70 75.90 90.30

About

If you used the code for your research, please, cite the paper:

@article{pakhomov2017deep,
  title={Deep Residual Learning for Instrument Segmentation in Robotic Surgery},
  author={Pakhomov, Daniil and Premachandran, Vittal and Allan, Max and Azizian, Mahdi and Navab, Nassir},
  journal={arXiv preprint arXiv:1703.08580},
  year={2017}
}

During implementation, some preliminary experiments and notes were reported:

Owner
Daniil Pakhomov
Phd student at JHU. Research interests: Image Classification, Image Segmentation, Face Detection and Face Recognition mostly based on Deep Learning.
Daniil Pakhomov
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3  Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 03, 2023
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
Proof of concept GnuCash Webinterface

Proof of Concept GnuCash Webinterface This may one day be a something truly great. Milestones [ ] Browse accounts and view transactions [ ] Record sim

Josh 14 Dec 28, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
The Ludii general game system, developed as part of the ERC-funded Digital Ludeme Project.

The Ludii General Game System Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). This repository h

Digital Ludeme Project 50 Jan 04, 2023
GNN-based Recommendation Benchmark

GRecX A Fair Benchmark for GNN-based Recommendation Homepage and Documentation Homepage: Documentation: Paper: GRecX: An Efficient and Unified Benchma

73 Oct 17, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.

Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training m

Activeloop 5.1k Jan 08, 2023
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
A Temporal Extension Library for PyTorch Geometric

Documentation | External Resources | Datasets PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric. The library

Benedek Rozemberczki 1.9k Jan 07, 2023
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022