Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

Related tags

Deep LearningPurNet
Overview

PurNet

Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

Abstract

Image-based salient object detection has made great progress over the past decades, especially after the revival of deep neural networks. By the aid of attention mechanisms to weight the image features adaptively, recent advanced deep learning-based models encourage the predicted results to approximate the ground-truth masks with as large predictable areas as possible, thus achieving the state-of-the-art performance. However, these methods do not pay enough attention to small areas prone to misprediction. In this way, it is still tough to accurately locate salient objects due to the existence of regions with indistinguishable foreground and background and regions with complex or fine structures. To address these problems, we propose a novel convolutional neural network with purificatory mechanism and structural similarity loss. Specifically, in order to better locate preliminary salient objects, we first introduce the promotion attention, which is based on spatial and channel attention mechanisms to promote attention to salient regions. Subsequently, for the purpose of restoring the indistinguishable regions that can be regarded as error-prone regions of one model, we propose the rectification attention, which is learned from the areas of wrong prediction and guide the network to focus on error-prone regions thus rectifying errors. Through these two attentions, we use the Purificatory Mechanism to impose strict weights with different regions of the whole salient objects and purify results from hard-to-distinguish regions, thus accurately predicting the locations and details of salient objects. In addition to paying different attention to these hard-to-distinguish regions, we also consider the structural constraints on complex regions and propose the Structural Similarity Loss. The proposed loss models the region-level pair-wise relationship between regions to assist these regions to calibrate their own saliency values. In experiments, the proposed purificatory mechanism and structural similarity loss can both effectively improve the performance, and the proposed approach outperforms 19 state-of-the-art methods on six datasets with a notable margin. Also, the proposed method is efficient and runs at over 27FPS on a single NVIDIA 1080Ti GPU.

Method

Framework The framework of our approach. We first extract the common features by extractor, which provides the features for the other three subnetworks. In detail, the promotion subnetwork produces promotion attention to guide the model to focus on salient regions, and the rectification subnetwork give the rectification attention for rectifying the errors. These two kind of attentions are combined to formed the purificatory mechanism, which is integrated in the purificatory subnetwork to refine the prediction of salient objects progressively.

Quantitative Evaluation

Quantitative Evaluation

Qualitative Evaluation

Qualitative Evaluation

Usage

Dataset

Download the DUTS dataset, and the corresponding superpixes can be downloaded. BaiduYun (Code: 2v1f)

Training

1. install pytorch
2. train stage1, run python train.py
3. train stage2, run python train.py
4. train stage3, run python train.py

The trained checkpoint can be downloaded. BaiduYun (Code: c6sk)

Testing

python test_code/test.py

The predicted saliency map of ECSSD can be downloaded. BaiduYun (Code: 1h4g) Results on different datasets including ECSSD, DUT-OMRON, PASCAL-S, HKU-IS, DUTS-TE, XPIE can all obtain by above testing code.

Evaluation

matlab -nosplash -nodesktop -r evaluation_all

Citation

@article{li2021salient,
  title={Salient object detection with purificatory mechanism and structural similarity loss},
  author={Li, Jia and Su, Jinming and Xia, Changqun and Ma, Mingcan and Tian, Yonghong},
  journal={IEEE Transactions on Image Processing},
  volume={30},
  pages={6855--6868},
  year={2021},
  publisher={IEEE}
}
Owner
Jinming Su
Good Luck!
Jinming Su
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Photogrammetry & Robotics Bonn 208 Dec 15, 2022
[BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations"

DomainMix [BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations" [paper] [de

Wenhao Wang 17 Dec 20, 2022
This is the source code for the experiments related to the paper Unsupervised Audio Source Separation Using Differentiable Parametric Source Models

Unsupervised Audio Source Separation Using Differentiable Parametric Source Models This is the source code for the experiments related to the paper Un

30 Oct 19, 2022
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction

DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in

5 Sep 26, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

MVSNeRF Project page | Paper This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance

Anpei Chen 529 Dec 30, 2022
A python module for configuration of block devices

Blivet is a python module for system storage configuration. CI status Licence See COPYING Installation From Fedora repositories Blivet is available in

78 Dec 14, 2022
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022