Simulation of early COVID-19 using SIR model and variants (SEIR ...).

Overview

COVID-19-simulation

Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO) of the Federal Technologycal University - Parana (UTFPR-ct) in the scope of the project GYRO4Life

Running the simulation

The code runs based on a csv with the same structure of nc85.csv or oa85.csv files which has a time series of confirmed cases and deaths and metadata information about the region being characterized on the line. Both cases and deaths have to be given for the simulation.

The main code is simulação.py, which receives a couple of arguments:

  • 1: region code (for the csv being used). In case the argument is empty ("-"), it will run for all lines of the csv [ex: -28]
  • 2: Name of the csv file with confirmed cases (omit the '.csv') [ex: nc85.csv -> -nc85]
  • 2: Name of the csv file with confirmed deaths (omit the '.csv') [ex: oa85.csv -> -oa85]
  • 3: Fitting method [-0: basinhopp, -1: differential evolution [default], -2: powell, -3: cobyla] [ex: -1]
  • 4: Boolean and quantity of opening and closure regimes for the simulation for confirmed cases (works as a contingency method reducing the probability of infection). '-0-0' ignores this factor for a simulation without contingency methods. If a quantity is given on the second argument, the boolean argument must be 1 [ex: '-1-1']
  • 5: Boolean and quantity of opening and closure regimes for the simulation for confirmed deaths (works as a contingency method reducing the probability of infection). '-0-0' ignores this factor for a simulation without contingency methods. If a quantity is given on the second argument, the boolean argument must be 1 [ex: '-1-1']
  • 6: Type of simulation [-n: simulation of one location (one csv line), -s: simulation of all csv locations, -b: bootstrap of one location [has uncertainty], -sl: simulation of a location with sensibility analysis] [ex: -n]
  • 7: Simulation period in days [ex: -200]
  • 8: number of days for validation [ex: -5]
  • 9: Subtype of simulation [-mod: hospitalization simulation, -std: SEIR simulation with asymptomatic and deaths]
  • 10: Run tests and additional graphics [-0: no, -1: yes]

Example call for a SEIR simulation with bootstrap using cases and deaths in Brazil. The simulation is done for 200 days and with a validation of 5 days.

python simulacao.py -28 -nc85 -oa85 -1 -1-2-0-0 -b -200 -5 -str -0
Owner
José Paulo Pereira das Dores Savioli
José Paulo Pereira das Dores Savioli
Decision tree is the most powerful and popular tool for classification and prediction

Diabetes Prediction Using Decision Tree Introduction Decision tree is the most powerful and popular tool for classification and prediction. A Decision

Arjun U 1 Jan 23, 2022
flexible time-series processing & feature extraction

A corona statistics and information telegram bot.

PreDiCT.IDLab 206 Dec 28, 2022
Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

The Learning Machines 1 Jan 16, 2022
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.

sklearn-porter Transpile trained scikit-learn estimators to C, Java, JavaScript and others. It's recommended for limited embedded systems and critical

Darius Morawiec 1.2k Jan 05, 2023
Uplift modeling and causal inference with machine learning algorithms

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 3.7k Jan 07, 2023
The unified machine learning framework, enabling framework-agnostic functions, layers and libraries.

The unified machine learning framework, enabling framework-agnostic functions, layers and libraries. Contents Overview In a Nutshell Where Next? Overv

Ivy 8.2k Dec 31, 2022
A repository of PyBullet utility functions for robotic motion planning, manipulation planning, and task and motion planning

pybullet-planning (previously ss-pybullet) A repository of PyBullet utility functions for robotic motion planning, manipulation planning, and task and

Caelan Garrett 260 Dec 27, 2022
Reproducibility and Replicability of Web Measurement Studies

Reproducibility and Replicability of Web Measurement Studies This repository holds additional material to the paper "Reproducibility and Replicability

6 Dec 31, 2022
Machine Learning Algorithms

Machine-Learning-Algorithms In this project, the dataset was created through a survey opened on Google forms. The purpose of the form is to find the p

Göktuğ Ayar 3 Aug 10, 2022
neurodsp is a collection of approaches for applying digital signal processing to neural time series

neurodsp is a collection of approaches for applying digital signal processing to neural time series, including algorithms that have been proposed for the analysis of neural time series. It also inclu

NeuroDSP 224 Dec 02, 2022
This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you ask it.

Crypto-Currency-Predictor This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you

Hazim Arafa 6 Dec 04, 2022
A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Johann Faouzi 1.4k Jan 01, 2023
Tools for diffing and merging of Jupyter notebooks.

nbdime provides tools for diffing and merging of Jupyter Notebooks.

Project Jupyter 2.3k Jan 03, 2023
Banpei is a Python package of the anomaly detection.

Banpei Banpei is a Python package of the anomaly detection. Anomaly detection is a technique used to identify unusual patterns that do not conform to

Hirofumi Tsuruta 282 Jan 03, 2023
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Fast Fourier Transform-accelerated Interpolation-based t-SNE (FIt-SNE)

FFT-accelerated Interpolation-based t-SNE (FIt-SNE) Introduction t-Stochastic Neighborhood Embedding (t-SNE) is a highly successful method for dimensi

Kluger Lab 547 Dec 21, 2022
Send rockets to Mars with artificial intelligence(Genetic algorithm) in python.

Send Rockets To Mars With AI Send rockets to Mars with artificial intelligence(Genetic algorithm) in python. Tools Python 3 EasyDraw How to Play Insta

Mohammad Dori 3 Jul 15, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

Payment-Date-Prediction Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

15 Sep 09, 2022
Python package for concise, transparent, and accurate predictive modeling

Python package for concise, transparent, and accurate predictive modeling. All sklearn-compatible and easy to use. 📚 docs • 📖 demo notebooks Modern

Chandan Singh 983 Jan 01, 2023