Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Overview

Dictionary Learning for Clustering on Hyperspectral Images

Overview

Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries. This framework was created as a part of the project I presented for completion of my Computer Science Honours' degree at the University of the Witwatersrand.
A paper was produced for this research, it was published by Springer's Journal of Signal, Image and Video Processing. The paper can be read for free here: https://rdcu.be/b5Vsq. Please look below for citation details.

Authored by: Joshua Bruton
Supervised by: Dr. Hairong Wang

Contents

This repository contains implementations or usage of the following techniques:

  1. Online Dictionary Learning
  2. Orthogonal Matching Pursuit with dynamic stopping criteria
  3. Spectral Clustering (sk-learn)

The repository also contains the SalinasA hyperspectral image. This and other hyperspectral data sets are available on the Grupo de Inteligencia Computacional website here.

Usage

I have created a requirements file. I recommend using pipenv with Python 3.6 to open a shell and then using

pipenv install -r requirements.txt

and requirements should be met. Then just run:

python demonstration.py

and the demonstration should run. It will train a dictionary and then use it for spectral clustering as discussed in the paper.

Previous work

One working discriminative dictionary has been provided in the repository, all of the others are available as assets on Comet.ml. They were all trained using the implementation of ODL provided in this repository. Bare in mind that dictionary learning is extremely sensitive to the initialisation of the dictionary; results for different dictionaries will vary drastically.

scikit-learn was used extensively throughout this project for more stable implementations. Thanks also go to Dave Biagioni, mitscha, and the authors of this article.

Future work

This repository is licensed under the GNU General Public License and therefore is completely free to use for any project you see fit. If you do use or learn from our work, we would appreciate if you cited the following details:

@article{10.1007/s11760-020-01750-z, 
  author = {Bruton, Joshua and Wang, Hairong}, 
  title = {{Dictionary learning for clustering on hyperspectral images}}, 
  issn = {1863-1703}, 
  doi = {10.1007/s11760-020-01750-z},
  pages = {1--7}, 
  journal = {Signal, Image and Video Processing}, 
  year = {2020}
}

Or:
Bruton, J., Wang, H. Dictionary learning for clustering on hyperspectral images. SIViP (2020). https://doi.org/10.1007/s11760-020-01750-z

The paper can be read for free.

Suggestions

If there are any pressing problems with the code please open an issue and I will attend to it as timeously as is possible.

Owner
Joshua Bruton
MSc. Computer Science student at the University of the Witwatersrand. Co-founder of Educess.
Joshua Bruton
VIsually-Pivoted Audio and(N) Text

VIP-ANT: VIsually-Pivoted Audio and(N) Text Code for the paper Connecting the Dots between Audio and Text without Parallel Data through Visual Knowled

Yän.PnG 16 Nov 04, 2022
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
Individual Tree Crown classification on WorldView-2 Images using Autoencoder -- Group 9 Weak learners - Final Project (Machine Learning 2020 Course)

Created by Olga Sutyrina, Sarah Elemili, Abduragim Shtanchaev and Artur Bille Individual Tree Crown classification on WorldView-2 Images using Autoenc

2 Dec 08, 2022
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
DANA paper supplementary materials

DANA Supplements This repository stores the data, results, and R scripts to generate these reuslts and figures for the corresponding paper Depth Norma

0 Dec 17, 2021
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022