TensorFlow 2 implementation of the Yahoo Open-NSFW model

Overview

ci License MIT 1.0

Introduction

Detecting Not-Suitable-For-Work (NSFW) images is a high demand task in computer vision. While there are many types of NSFW images, here we focus on the pornographic images.

The Yahoo Open-NSFW model originally developed with the Caffe framework has been a favourite choice, but the work is now discontinued and Caffe is also becoming less popular. Please see the description on the Yahoo project page for the context, definitions, and model training details.

This Open-NSFW 2 project provides a TensorFlow 2 implementation of the Yahoo model, with references to its previous third-party TensorFlow 1 implementation.

Installation

Python 3.7 or above is required. Tested for 3.7, 3.8, and 3.9.

The best way to install Open-NSFW 2 with its dependencies is from PyPI:

python3 -m pip install --upgrade opennsfw2

Alternatively, to obtain the latest version from this repository:

git clone [email protected]:bhky/opennsfw2.git
cd opennsfw2
python3 -m pip install .

Usage

import numpy as np
import opennsfw2 as n2
from PIL import Image

# Load and preprocess image.
image_path = "path/to/your/image.jpg"
pil_image = Image.open(image_path)
image = n2.preprocess_image(pil_image, n2.Preprocessing.YAHOO)
# The preprocessed image is a NumPy array of shape (224, 224, 3).

# Create the model.
# By default, this call will search for the pre-trained weights file from path:
# $HOME/.opennsfw2/weights/open_nsfw_weights.h5
# If not exists, the file will be downloaded from this repository.
# The model is a `tf.keras.Model` object.
model = n2.make_open_nsfw_model()

# Make predictions.
inputs = np.expand_dims(image, axis=0)  # Add batch axis (for single image).
predictions = model.predict(inputs)

# The shape of predictions is (batch_size, 2).
# Each row gives [sfw_probability, nsfw_probability] of an input image, e.g.:
sfw_probability, nsfw_probability = predictions[0]

Alternatively, the end-to-end pipeline function can be used:

import opennsfw2 as n2

image_paths = [
    "path/to/your/image1.jpg",
    "path/to/your/image2.jpg",
    # ...
]

predictions = n2.predict(
    image_paths, batch_size=4, preprocessing=n2.Preprocessing.YAHOO
)

API

preprocess_image

Apply necessary preprocessing to the input image.

  • Parameters:
    • pil_image (PIL.Image): Input as a Pillow image.
    • preprocessing (Preprocessing enum, default Preprocessing.YAHOO): See preprocessing details.
  • Return:
    • NumPy array of shape (224, 224, 3).

Preprocessing

Enum class for preprocessing options.

  • Preprocessing.YAHOO
  • Preprocessing.SIMPLE

make_open_nsfw_model

Create an instance of the NSFW model, optionally with pre-trained weights from Yahoo.

  • Parameters:
    • input_shape (Tuple[int, int, int], default (224, 224, 3)): Input shape of the model, this should not be changed.
    • weights_path (Optional[str], default $HOME/.opennsfw/weights/open_nsfw_weights.h5): Path to the weights in HDF5 format to be loaded by the model. The weights file will be downloaded if not exists. Users can provide path if the default is not preferred. If None, no weights will be downloaded nor loaded to the model.
  • Return:
    • tf.keras.Model object.

predict

End-to-end pipeline function from input image paths to predictions.

  • Parameters:
    • image_paths (Sequence[str]): List of paths to input image files.
    • batch_size (int, default 32): Batch size to be used for model inference.
    • preprocessing: Same as that in preprocess_image.
    • weights_path: Same as that in make_open_nsfw_model.
  • Return:
    • NumPy array of shape (batch_size, 2), each row gives [sfw_probability, nsfw_probability] of an input image.

Preprocessing details

Options

This implementation provides the following preprocessing options.

  • YAHOO: The default option which was used in the original Yahoo's Caffe and the later TensorFlow 1 implementations. The key steps are:
    • Resize the input Pillow image to (256, 256).
    • Save the image as JPEG bytes and reload again to a NumPy image (this step is mysterious, but somehow it really makes a difference).
    • Crop the centre part of the NumPy image with size (224, 224).
    • Swap the colour channels to BGR.
    • Subtract the training dataset mean value of each channel: [104, 117, 123].
  • SIMPLE: A simpler and probably more intuitive preprocessing option is also provided, but note that the model output probabilities will be different. The key steps are:
    • Resize the input Pillow image to (224, 224).
    • Convert to a NumPy image.
    • Swap the colour channels to BGR.
    • Subtract the training dataset mean value of each channel: [104, 117, 123].

Comparison

Using 521 private images, the NSFW probabilities given by three different settings are compared:

  • TensorFlow 1 implementation with YAHOO preprocessing.
  • TensorFlow 2 implementation with YAHOO preprocessing.
  • TensorFlow 2 implementation with SIMPLE preprocessing.

The following figure shows the result:

NSFW probabilities comparison

The current TensorFlow 2 implementation with YAHOO preprocessing can totally reproduce the well-tested TensorFlow 1 result, with small floating point errors only.

With SIMPLE preprocessing the results are different, where the model tends to give lower probabilities.

You might also like...
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

Using Tensorflow Object Detection API to detect Waymo open dataset
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

Comments
  • ERROR WITH NO ERROR

    ERROR WITH NO ERROR

    Hi, I don't understand what happened with opennsfw2 code. My installation is OK. I install Keras and Tensorflow 2.0 with CUDA but nothing, Any idea ? I attached a screenshot. Thank you to help me 0008_2022-09-10_17_heures_18

    opened by fog88 7
  • Which NSFW Area is this AI covering?

    Which NSFW Area is this AI covering?

    Hi,

    very cool project, I am looking for an AI, which can cover on the one side nudity, but doesn't judge sexy images and also bans traumatic images, like horror and the crazy things, like NSFW 4 things, is it possible with this AI?

    nsfw-chart

    I found this image online, which is your AI covering?

    Thanks!

    opened by Flori00123 5
  • small demo website

    small demo website

    would be nice to have a small website that allows users to demo the model instead of having to run it all, such as https://maybeshewill-cv.github.io/nsfw_classification/

    opened by DankMemeGuy 1
Releases(v0.10.2)
Owner
Bosco Yung
Machine Learning Engineer, Lecturer, Astrophysicist
Bosco Yung
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

International Business Machines 72 Jan 06, 2023
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Like a cowsay but without cows!

Foxsay This is a simple program that generates pictures of a cute fox with a message. It is like a cowsay but without cows! Fox girls are better! Usag

Anastasia Kim 28 Feb 20, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022