TensorFlow 2 implementation of the Yahoo Open-NSFW model

Overview

ci License MIT 1.0

Introduction

Detecting Not-Suitable-For-Work (NSFW) images is a high demand task in computer vision. While there are many types of NSFW images, here we focus on the pornographic images.

The Yahoo Open-NSFW model originally developed with the Caffe framework has been a favourite choice, but the work is now discontinued and Caffe is also becoming less popular. Please see the description on the Yahoo project page for the context, definitions, and model training details.

This Open-NSFW 2 project provides a TensorFlow 2 implementation of the Yahoo model, with references to its previous third-party TensorFlow 1 implementation.

Installation

Python 3.7 or above is required. Tested for 3.7, 3.8, and 3.9.

The best way to install Open-NSFW 2 with its dependencies is from PyPI:

python3 -m pip install --upgrade opennsfw2

Alternatively, to obtain the latest version from this repository:

git clone [email protected]:bhky/opennsfw2.git
cd opennsfw2
python3 -m pip install .

Usage

import numpy as np
import opennsfw2 as n2
from PIL import Image

# Load and preprocess image.
image_path = "path/to/your/image.jpg"
pil_image = Image.open(image_path)
image = n2.preprocess_image(pil_image, n2.Preprocessing.YAHOO)
# The preprocessed image is a NumPy array of shape (224, 224, 3).

# Create the model.
# By default, this call will search for the pre-trained weights file from path:
# $HOME/.opennsfw2/weights/open_nsfw_weights.h5
# If not exists, the file will be downloaded from this repository.
# The model is a `tf.keras.Model` object.
model = n2.make_open_nsfw_model()

# Make predictions.
inputs = np.expand_dims(image, axis=0)  # Add batch axis (for single image).
predictions = model.predict(inputs)

# The shape of predictions is (batch_size, 2).
# Each row gives [sfw_probability, nsfw_probability] of an input image, e.g.:
sfw_probability, nsfw_probability = predictions[0]

Alternatively, the end-to-end pipeline function can be used:

import opennsfw2 as n2

image_paths = [
    "path/to/your/image1.jpg",
    "path/to/your/image2.jpg",
    # ...
]

predictions = n2.predict(
    image_paths, batch_size=4, preprocessing=n2.Preprocessing.YAHOO
)

API

preprocess_image

Apply necessary preprocessing to the input image.

  • Parameters:
    • pil_image (PIL.Image): Input as a Pillow image.
    • preprocessing (Preprocessing enum, default Preprocessing.YAHOO): See preprocessing details.
  • Return:
    • NumPy array of shape (224, 224, 3).

Preprocessing

Enum class for preprocessing options.

  • Preprocessing.YAHOO
  • Preprocessing.SIMPLE

make_open_nsfw_model

Create an instance of the NSFW model, optionally with pre-trained weights from Yahoo.

  • Parameters:
    • input_shape (Tuple[int, int, int], default (224, 224, 3)): Input shape of the model, this should not be changed.
    • weights_path (Optional[str], default $HOME/.opennsfw/weights/open_nsfw_weights.h5): Path to the weights in HDF5 format to be loaded by the model. The weights file will be downloaded if not exists. Users can provide path if the default is not preferred. If None, no weights will be downloaded nor loaded to the model.
  • Return:
    • tf.keras.Model object.

predict

End-to-end pipeline function from input image paths to predictions.

  • Parameters:
    • image_paths (Sequence[str]): List of paths to input image files.
    • batch_size (int, default 32): Batch size to be used for model inference.
    • preprocessing: Same as that in preprocess_image.
    • weights_path: Same as that in make_open_nsfw_model.
  • Return:
    • NumPy array of shape (batch_size, 2), each row gives [sfw_probability, nsfw_probability] of an input image.

Preprocessing details

Options

This implementation provides the following preprocessing options.

  • YAHOO: The default option which was used in the original Yahoo's Caffe and the later TensorFlow 1 implementations. The key steps are:
    • Resize the input Pillow image to (256, 256).
    • Save the image as JPEG bytes and reload again to a NumPy image (this step is mysterious, but somehow it really makes a difference).
    • Crop the centre part of the NumPy image with size (224, 224).
    • Swap the colour channels to BGR.
    • Subtract the training dataset mean value of each channel: [104, 117, 123].
  • SIMPLE: A simpler and probably more intuitive preprocessing option is also provided, but note that the model output probabilities will be different. The key steps are:
    • Resize the input Pillow image to (224, 224).
    • Convert to a NumPy image.
    • Swap the colour channels to BGR.
    • Subtract the training dataset mean value of each channel: [104, 117, 123].

Comparison

Using 521 private images, the NSFW probabilities given by three different settings are compared:

  • TensorFlow 1 implementation with YAHOO preprocessing.
  • TensorFlow 2 implementation with YAHOO preprocessing.
  • TensorFlow 2 implementation with SIMPLE preprocessing.

The following figure shows the result:

NSFW probabilities comparison

The current TensorFlow 2 implementation with YAHOO preprocessing can totally reproduce the well-tested TensorFlow 1 result, with small floating point errors only.

With SIMPLE preprocessing the results are different, where the model tends to give lower probabilities.

You might also like...
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

Using Tensorflow Object Detection API to detect Waymo open dataset
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

Comments
  • ERROR WITH NO ERROR

    ERROR WITH NO ERROR

    Hi, I don't understand what happened with opennsfw2 code. My installation is OK. I install Keras and Tensorflow 2.0 with CUDA but nothing, Any idea ? I attached a screenshot. Thank you to help me 0008_2022-09-10_17_heures_18

    opened by fog88 7
  • Which NSFW Area is this AI covering?

    Which NSFW Area is this AI covering?

    Hi,

    very cool project, I am looking for an AI, which can cover on the one side nudity, but doesn't judge sexy images and also bans traumatic images, like horror and the crazy things, like NSFW 4 things, is it possible with this AI?

    nsfw-chart

    I found this image online, which is your AI covering?

    Thanks!

    opened by Flori00123 5
  • small demo website

    small demo website

    would be nice to have a small website that allows users to demo the model instead of having to run it all, such as https://maybeshewill-cv.github.io/nsfw_classification/

    opened by DankMemeGuy 1
Releases(v0.10.2)
Owner
Bosco Yung
Machine Learning Engineer, Lecturer, Astrophysicist
Bosco Yung
This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.

Code-and-Dataset-for-CapSal This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detec

lu zhang 48 Aug 19, 2022
Make differentially private training of transformers easy for everyone

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
pix2pix in tensorflow.js

pix2pix in tensorflow.js This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite See a live demo here: https://yining1023.github

Yining Shi 47 Oct 04, 2022
Weakly Supervised End-to-End Learning (NeurIPS 2021)

WeaSEL: Weakly Supervised End-to-end Learning This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 202

Auton Lab, Carnegie Mellon University 131 Jan 06, 2023
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
Unofficial implementation of Fast-SCNN: Fast Semantic Segmentation Network

Fast-SCNN: Fast Semantic Segmentation Network Unofficial implementation of the model architecture of Fast-SCNN. Real-time Semantic Segmentation and mo

Philip Popien 69 Aug 11, 2022
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 03, 2023
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023
Keras like implementation of Deep Learning architectures from scratch using numpy.

Mini-Keras Keras like implementation of Deep Learning architectures from scratch using numpy. How to contribute? The project contains implementations

MANU S PILLAI 5 Oct 10, 2021
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022