Python Blood Vessel Topology Analysis

Related tags

Deep Learningpyvesto
Overview

Python Blood Vessel Topology Analysis

This repository is not being updated anymore. The new version of PyVesTo is called PyVaNe and is available at https://github.com/chcomin/pyvane

Example

Python Blood Vessel Topology Analysis (PyVesTo) is a framework for analysing blood vessel digital images. This includes the segmentation, representation and characterization of blood vessels. The framework identifies 2D and 3D vascular systems and represent them using graphs. The graphs describe the topology of the blood vessels, that is, bifurcations and terminations are represented as nodes and two nodes are connected if there is a blood vessel segment between them.

Functions are provided for measuring blood vessel density, number of bifurcation points and tortuosity, but other metrics can be implemented. The created graphs are objects from the Networkx libray.

PyVesTo has been used in the following publications:

  • McDonald, Matthew W., Matthew S. Jeffers, Lama Issa, Anthony Carter, Allyson Ripley, Lydia M. Kuhl, Cameron Morse et al. "An Exercise Mimetic Approach to Reduce Poststroke Deconditioning and Enhance Stroke Recovery." Neurorehabilitation and Neural Repair 35, no. 6 (2021): 471-485.
  • Ouellette, Julie, Xavier Toussay, Cesar H. Comin, Luciano da F. Costa, Mirabelle Ho, María Lacalle-Aurioles, Moises Freitas-Andrade et al. "Vascular contributions to 16p11. 2 deletion autism syndrome modeled in mice." Nature Neuroscience 23, no. 9 (2020): 1090-1101.
  • Boisvert, Naomi C., Chet E. Holterman, Jean-François Thibodeau, Rania Nasrallah, Eldjonai Kamto, Cesar H. Comin, Luciano da F. Costa et al. "Hyperfiltration in ubiquitin C-terminal hydrolase L1-deleted mice." Clinical Science 132, no. 13 (2018): 1453-1470.
  • Gouveia, Ayden, Matthew Seegobin, Timal S. Kannangara, Ling He, Fredric Wondisford, Cesar H. Comin, Luciano da F. Costa et al. "The aPKC-CBP pathway regulates post-stroke neurovascular remodeling and functional recovery." Stem cell reports 9, no. 6 (2017): 1735-1744.
  • Kur, Esther, Jiha Kim, Aleksandra Tata, Cesar H. Comin, Kyle I. Harrington, Luciano da F Costa, Katie Bentley, and Chenghua Gu. "Temporal modulation of collective cell behavior controls vascular network topology." Elife 5 (2016): e13212.
  • Lacoste, Baptiste, Cesar H. Comin, Ayal Ben-Zvi, Pascal S. Kaeser, Xiaoyin Xu, Luciano da F. Costa, and Chenghua Gu. "Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex." Neuron 83, no. 5 (2014): 1117-1130.

3D Blood Vessel Image

The library works for 2D and 3D blood vessel images but the focus of the library lies on 3D confocal microscopy images, such as this one:

Segmentation

File segmentation.py contains the segmentation routines, aimed at classifying pixels into two categories: blood vessel or background. The image below is a sum projection of a 3D binary image.

Medial Lines

File skeleton.py contains a skeletonization function implemented in C and interfaced using ctypes for calculating the medial lines of the blood vessels. This function was compiled for Linux.

Blood Vessel Reconstruction

Having the binary image and the medial lines, a model of the blood vessels surface can be generated:

Graph Generation and Adjustment

Files inside the graph folder are responsible for creating the graph and removing some artifacts such as small branches generated from the skeleton calculation.

Measurements

Functions inside measure.py implement some basic blood vessel measurmeents.

Whole Pipeline

The notebook blood_vessel_pipeline.ipynb contains an example pipeline for applying all the functionalities.

Dependencies (version)

  • Python (3.7.4)
  • scipy (1.4.1)
  • numpy (1.19.2)
  • networkx (2.4)
  • matplotlib (3.3.4)
  • igraph (0.7.1) - optional

Warning, the skeletonization functions only work on Linux.

Alex Pashevich 62 Dec 24, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
This is the implementation of the paper "Self-supervised Outdoor Scene Relighting"

Self-supervised Outdoor Scene Relighting This is the implementation of the paper "Self-supervised Outdoor Scene Relighting". The model is implemented

Ye Yu 24 Dec 17, 2022
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"

Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se

zaixi 71 Dec 20, 2022
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
A tool for making map images from OpenTTD save games

OpenTTD Surveyor A tool for making map images from OpenTTD save games. This is not part of the main OpenTTD codebase, nor is it ever intended to be pa

Aidan Randle-Conde 9 Feb 15, 2022
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
통일된 DataScience 폴더 구조 제공 및 가상환경 작업의 부담감 해소

Lucas coded by linux shell 목차 Mac버전 CookieCutter (autoenv) 1.How to Install autoenv 2.폴더 진입 시, activate 구현하기 3.폴더 탈출 시, deactivate 구현하기 4.Alias 설정하기 5

ello 3 Feb 21, 2022
Supplementary materials for ISMIR 2021 LBD paper "Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes"

Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes Supplementary materials for ISMIR 2021 LBD submission: K. N. W

Karn Watcharasupat 2 Oct 25, 2021
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) 🔥 If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022