Python Blood Vessel Topology Analysis

Related tags

Deep Learningpyvesto
Overview

Python Blood Vessel Topology Analysis

This repository is not being updated anymore. The new version of PyVesTo is called PyVaNe and is available at https://github.com/chcomin/pyvane

Example

Python Blood Vessel Topology Analysis (PyVesTo) is a framework for analysing blood vessel digital images. This includes the segmentation, representation and characterization of blood vessels. The framework identifies 2D and 3D vascular systems and represent them using graphs. The graphs describe the topology of the blood vessels, that is, bifurcations and terminations are represented as nodes and two nodes are connected if there is a blood vessel segment between them.

Functions are provided for measuring blood vessel density, number of bifurcation points and tortuosity, but other metrics can be implemented. The created graphs are objects from the Networkx libray.

PyVesTo has been used in the following publications:

  • McDonald, Matthew W., Matthew S. Jeffers, Lama Issa, Anthony Carter, Allyson Ripley, Lydia M. Kuhl, Cameron Morse et al. "An Exercise Mimetic Approach to Reduce Poststroke Deconditioning and Enhance Stroke Recovery." Neurorehabilitation and Neural Repair 35, no. 6 (2021): 471-485.
  • Ouellette, Julie, Xavier Toussay, Cesar H. Comin, Luciano da F. Costa, Mirabelle Ho, María Lacalle-Aurioles, Moises Freitas-Andrade et al. "Vascular contributions to 16p11. 2 deletion autism syndrome modeled in mice." Nature Neuroscience 23, no. 9 (2020): 1090-1101.
  • Boisvert, Naomi C., Chet E. Holterman, Jean-François Thibodeau, Rania Nasrallah, Eldjonai Kamto, Cesar H. Comin, Luciano da F. Costa et al. "Hyperfiltration in ubiquitin C-terminal hydrolase L1-deleted mice." Clinical Science 132, no. 13 (2018): 1453-1470.
  • Gouveia, Ayden, Matthew Seegobin, Timal S. Kannangara, Ling He, Fredric Wondisford, Cesar H. Comin, Luciano da F. Costa et al. "The aPKC-CBP pathway regulates post-stroke neurovascular remodeling and functional recovery." Stem cell reports 9, no. 6 (2017): 1735-1744.
  • Kur, Esther, Jiha Kim, Aleksandra Tata, Cesar H. Comin, Kyle I. Harrington, Luciano da F Costa, Katie Bentley, and Chenghua Gu. "Temporal modulation of collective cell behavior controls vascular network topology." Elife 5 (2016): e13212.
  • Lacoste, Baptiste, Cesar H. Comin, Ayal Ben-Zvi, Pascal S. Kaeser, Xiaoyin Xu, Luciano da F. Costa, and Chenghua Gu. "Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex." Neuron 83, no. 5 (2014): 1117-1130.

3D Blood Vessel Image

The library works for 2D and 3D blood vessel images but the focus of the library lies on 3D confocal microscopy images, such as this one:

Segmentation

File segmentation.py contains the segmentation routines, aimed at classifying pixels into two categories: blood vessel or background. The image below is a sum projection of a 3D binary image.

Medial Lines

File skeleton.py contains a skeletonization function implemented in C and interfaced using ctypes for calculating the medial lines of the blood vessels. This function was compiled for Linux.

Blood Vessel Reconstruction

Having the binary image and the medial lines, a model of the blood vessels surface can be generated:

Graph Generation and Adjustment

Files inside the graph folder are responsible for creating the graph and removing some artifacts such as small branches generated from the skeleton calculation.

Measurements

Functions inside measure.py implement some basic blood vessel measurmeents.

Whole Pipeline

The notebook blood_vessel_pipeline.ipynb contains an example pipeline for applying all the functionalities.

Dependencies (version)

  • Python (3.7.4)
  • scipy (1.4.1)
  • numpy (1.19.2)
  • networkx (2.4)
  • matplotlib (3.3.4)
  • igraph (0.7.1) - optional

Warning, the skeletonization functions only work on Linux.

Code and data accompanying our SVRHM'21 paper.

Code and data accompanying our SVRHM'21 paper. Requires tensorflow 1.13, python 3.7, scikit-learn, and pytorch 1.6.0 to be installed. Python scripts i

5 Nov 17, 2021
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!

Serpent.AI - Game Agent Framework (Python) Update: Revival (May 2020) Development work has resumed on the framework with the aim of bringing it into 2

Serpent.AI 6.4k Jan 05, 2023
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Zhao Zhang 35 Nov 25, 2022
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on

Su Pang 254 Dec 16, 2022
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
Balancing Principle for Unsupervised Domain Adaptation

Blancing Principle for Domain Adaptation NeurIPS 2021 Paper Abstract We address the unsolved algorithm design problem of choosing a justified regulari

Marius-Constantin Dinu 4 Dec 15, 2022
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Kai Zhang 2k Dec 31, 2022
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
A library for differentiable nonlinear optimization.

Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to

Meta Research 1.1k Dec 30, 2022
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022