PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

Overview

MarkovGNN

This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusion". This method uses different markov graphs in different layers of the GNN.

PDF is available in arXiv

System requirements

Users will need to install the following tools (CPU version).

PyTorch: 1.7.0
PyTorch-Geometric: 1.6.1
PyTorchSparse: 0.6.8
PyTorch Scatter: 2.0.5
PyTorch Cluster: 1.5.8
PyTorch Spline Conv: 1.2.0
NetworkX: 2.2
scikit-learn: 0.23.2
Matplotlib: 3.0.3

How to run

To use random seed disable the seed-fixing portion in the main.py file. A list of sample commands to run the MarkovGCN models.

python main.py --edgelist datasets/input2f/email.edgelist --label datasets/input2f/email.nodes.labels --eps 0.26 --epoch 200 --alpha 0.1 --nlayers 3 --lrate 0.01 --droprate 0.3 --markov_agg

python main.py --edgelist datasets/input2f/usaairports.edgelist --label datasets/input2f/usaairports.nodes.labels --oneindexed 1 --epoch 200 --alpha 1.0 --eps 0.09 --lrate 0.01 --nlayers 4 --normrow 0 --inflate 1.5 --markov_agg

python main.py --edgelist datasets/input2f/yeast.edgelist --label datasets/input2f/yeast.nodes.labels --oneindexed 1 --onelabeled 1 --eps 0.75 --epoch 200 --inflate 1.7 --lrate 0.01 --alpha 0.8 --droprate 0.1 --nlayers 3 

python main.py --edgelist datasets/input3f/squirrel_edges.txt --label datasets/input3f/squirrel_labels.txt --feature datasets/input3f/squirrel_features.txt --epoch 200 --eps 0.05 --droprate 0.25 --markov_agg --nlayers 6 --markov_agg

python main.py --edgelist datasets/input3f/chameleon_edges.txt --label datasets/input3f/chameleon_labels.txt --feature datasets/input3f/chameleon_features.txt --epoch 200 --alpha 0.8 --nlayers 3 --eps 0.2 --inflate 1.5 --droprate 0.5 --markov_agg

python main.py --edgelist datasets/input3f/chameleon_edges.txt --label datasets/input3f/chameleon_labels.txt --feature datasets/input3f/chameleon_features.txt --epoch 200 --alpha 0.2 --nlayers 2 --eps 0.06 --inflate 1.8 --droprate 0.7 --markov_agg

python main.py --eps 0.03 --droprate 0.85 --epoch 300 --alpha 0.05 --nlayers 2 --lrate 0.005 --inflate 1.8 --markov_agg

python main.py --eps 0.03 --droprate 0.85 --epoch 300 --alpha 0.05 --nlayers 2 --lrate 0.001 --inflate 3.5 --markov_agg --dataset Citeseer

python main.py --edgelist datasets/input3f/actor_edges.txt --label datasets/input3f/actor_labels.txt --feature datasets/input3f/actor_features.txt --epoch 200  --alpha 0.4 --markov_agg --nlayers 4

python main.py --edgelist datasets/input3f/actor_edges.txt --label datasets/input3f/actor_labels.txt --feature datasets/input3f/actor_features.txt --epoch 200  --alpha 0.2 --markov_agg --nlayers 3 --eps 0.3

To compare the results with respect to vanilla GCN, use the argument --use_gcn in the command line.

Parameters

There are several options to run the method which are outlined in the main.py file.

--markov_dense -> markov process uses dense matrix multiplication (sparse matrix multiplicaiton is the default option)
--markov_agg -> i-th layer uses a markov matrix from i-th iteration, this option with higher threshold will produce better runtime
--use_gcn -> run the vanilla GCN model.
  e.g., $ python main.py --edgelist datasets/input3f/actor_edges.txt --label datasets/input3f/actor_labels.txt --feature datasets/input3f/actor_features.txt --epoch 200  --use_gcn

Citation

If you find this repository helpful, please cite the following paper:

@article{rahman2022markovgnn,
  title={{MarkovGNN: Graph} Neural Networks on Markov Diffusion},
  author={Rahman, Md. Khaledur and Agrawal, Abhigya and Azad, Ariful},
  booktitle={arXiv preprint arXiv:2202.02470},
  year={2022}
}

Contact

Please create an issue if you face any problem to run this method. Don't hesitate to contact the following person if you have any questions: Md. Khaledur Rahman ([email protected]).

Owner
HipGraph: High-Performance Graph Analytics and Learning
HipGraph: High-Performance Graph Analytics and Learning
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition

AdaFocusV2 This repo contains the official code and pre-trained models for AdaFo

79 Dec 26, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | 장요엘 65 Jan 07, 2023
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
PyTorch implementation of the TTC algorithm

Trust-the-Critics This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critic

0 Nov 29, 2021
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
First-Order Probabilistic Programming Language

FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d

Renato Costa 23 Dec 20, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023