Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

Overview

arXiv, porject page, paper

Blind Image Decomposition (BID)

Blind Image Decomposition is a novel task. The task requires separating a superimposed image into constituent underlying images in a blind setting, that is, both the source components involved in mixing as well as the mixing mechanism are unknown.

We invite our community to explore the novel BID task, including discovering interesting areas of application, developing novel methods, extending the BID setting,and constructing benchmark datasets.

Blind Image Decomposition
Junlin Han, Weihao Li, Pengfei Fang, Chunyi Sun, Jie Hong, Ali Armin, Lars Petersson, Hongdong Li
DATA61-CSIRO and Australian National University
Preprint

BID demo:

BIDeN (Blind Image Decomposition Network):

Applications of BID

Deraining (rain streak, snow, haze, raindrop):
Row 1-6 presents 6 cases of a same scene. The 6 cases are (1): rainstreak, (2): rain streak + snow, (3): rain streak + light haze, (4): rain streak + heavy haze, (5): rain streak + moderate haze + raindrop, (6)rain streak + snow + moderate haze + raindrop.

Joint shadow/reflection/watermark removal:

Prerequisites

Python 3.7 or above.

For packages, see requirements.txt.

Getting started

  • Clone this repo:
git clone https://github.com/JunlinHan/BID.git
  • Install PyTorch 1.7 or above and other dependencies (e.g., torchvision, visdom, dominate, gputil).

    For pip users, please type the command pip install -r requirements.txt.

    For Conda users, you can create a new Conda environment using conda env create -f environment.yml. (Recommend)

    We tested our code on both Windows and Ubuntu OS.

BID Datasets

BID Train/Test

  • Detailed instructions are provided at ./models/.
  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097.

Task I: Mixed image decomposition across multiple domains:

Train (biden n, where n is the maximum number of source components):

python train.py --dataroot ./datasets/image_decom --name biden2 --model biden2 --dataset_mode unaligned2
python train.py --dataroot ./datasets/image_decom --name biden3 --model biden3 --dataset_mode unaligned3
...
python train.py --dataroot ./datasets/image_decom --name biden8 --model biden8 --dataset_mode unaligned8

Test a single case (use n = 3 as an example):

Test a single case:
python test.py --dataroot ./datasets/image_decom --name biden3 --model biden3 --dataset_mode unaligned3 --test_input A
python test.py --dataroot ./datasets/image_decom --name biden3 --model biden3 --dataset_mode unaligned3 --test_input AB

... ane other cases. change test_input to the case you want.

Test all cases:

python test2.py --dataroot ./datasets/image_decom --name biden3 --model biden3 --dataset_mode unaligned3

Task II: Real-scenario deraining:

Train:

python train.py --dataroot ./datasets/rain --name task2 --model rain --dataset_mode rain

Task III: Joint shadow/reflection/watermark removal:

Train:

python train.py --dataroot ./datasets/jointremoval_v1 --name task3_v1 --model jointremoval --dataset_mode jointremoval
or
python train.py --dataroot ./datasets/jointremoval_v2 --name task3_v2 --model jointremoval --dataset_mode jointremoval

The test results will be saved to an html file here: ./results/.

Apply a pre-trained BIDeN model

We provide our pre-trained BIDeN models at: https://drive.google.com/drive/folders/1UBmdKZXYewJVXHT4dRaat4g8xZ61OyDF?usp=sharing

Download the pre-tained model, unzip it and put it inside ./checkpoints.

Example usage: Download the dataset of task II (rain) and pretainred model of task II (task2). Test the rain streak case.

python test.py --dataroot ./datasets/rain --name task2 --model rain --dataset_mode rain --test_input B 

Evaluation

For FID score, use pytorch-fid.

For PSNR/SSIM/RMSE, see ./metrics/.

Raindrop effect

See ./raindrop/.

Citation

If you use our code or our results, please consider citing our paper. Thanks in advance!

@inproceedings{han2021bid,
  title={Blind Image Decomposition},
  author={Junlin Han and Weihao Li and Pengfei Fang and Chunyi Sun and Jie Hong and Mohammad Ali Armin and Lars Petersson and Hongdong Li},
  booktitle={arXiv preprint arXiv:2108.11364},
  year={2021}
}

Contact

[email protected] or [email protected]

Acknowledgments

Our code is developed based on DCLGAN and CUT. We thank the auhtors of MPRNet, perceptual-reflection-removal, Double-DIP, Deep-adversarial-decomposition for sharing their source code. We thank exposure-fusion-shadow-removal and ghost-free-shadow-removal for providing the source code and results. We thank pytorch-fid for FID computation.

Owner
Ugrad, ANU. Working on vision/graphics. Email: [email protected]
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
Trading Strategies for Freqtrade

Freqtrade Strategies Strategies for Freqtrade, developed primarily in a partnership between @werkkrew and @JimmyNixx from the Freqtrade Discord. Use t

Bryan Chain 242 Jan 07, 2023
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
Atif Hassan 103 Dec 14, 2022
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
A python3 tool to take a 360 degree survey of the RF spectrum (hamlib + rotctld + RTL-SDR/HackRF)

RF Light House (rflh) A python script to use a rotor and a SDR device (RTL-SDR or HackRF One) to measure the RF level around and get a data set and be

Pavel Milanes (CO7WT) 11 Dec 13, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
HDMapNet: A Local Semantic Map Learning and Evaluation Framework

HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [

Tsinghua MARS Lab 421 Jan 04, 2023
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
DETReg: Unsupervised Pretraining with Region Priors for Object Detection

DETReg: Unsupervised Pretraining with Region Priors for Object Detection Amir Bar, Xin Wang, Vadim Kantorov, Colorado J Reed, Roei Herzig, Gal Chechik

Amir Bar 283 Dec 27, 2022
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022