Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

Overview

arXiv, porject page, paper

Blind Image Decomposition (BID)

Blind Image Decomposition is a novel task. The task requires separating a superimposed image into constituent underlying images in a blind setting, that is, both the source components involved in mixing as well as the mixing mechanism are unknown.

We invite our community to explore the novel BID task, including discovering interesting areas of application, developing novel methods, extending the BID setting,and constructing benchmark datasets.

Blind Image Decomposition
Junlin Han, Weihao Li, Pengfei Fang, Chunyi Sun, Jie Hong, Ali Armin, Lars Petersson, Hongdong Li
DATA61-CSIRO and Australian National University
Preprint

BID demo:

BIDeN (Blind Image Decomposition Network):

Applications of BID

Deraining (rain streak, snow, haze, raindrop):
Row 1-6 presents 6 cases of a same scene. The 6 cases are (1): rainstreak, (2): rain streak + snow, (3): rain streak + light haze, (4): rain streak + heavy haze, (5): rain streak + moderate haze + raindrop, (6)rain streak + snow + moderate haze + raindrop.

Joint shadow/reflection/watermark removal:

Prerequisites

Python 3.7 or above.

For packages, see requirements.txt.

Getting started

  • Clone this repo:
git clone https://github.com/JunlinHan/BID.git
  • Install PyTorch 1.7 or above and other dependencies (e.g., torchvision, visdom, dominate, gputil).

    For pip users, please type the command pip install -r requirements.txt.

    For Conda users, you can create a new Conda environment using conda env create -f environment.yml. (Recommend)

    We tested our code on both Windows and Ubuntu OS.

BID Datasets

BID Train/Test

  • Detailed instructions are provided at ./models/.
  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097.

Task I: Mixed image decomposition across multiple domains:

Train (biden n, where n is the maximum number of source components):

python train.py --dataroot ./datasets/image_decom --name biden2 --model biden2 --dataset_mode unaligned2
python train.py --dataroot ./datasets/image_decom --name biden3 --model biden3 --dataset_mode unaligned3
...
python train.py --dataroot ./datasets/image_decom --name biden8 --model biden8 --dataset_mode unaligned8

Test a single case (use n = 3 as an example):

Test a single case:
python test.py --dataroot ./datasets/image_decom --name biden3 --model biden3 --dataset_mode unaligned3 --test_input A
python test.py --dataroot ./datasets/image_decom --name biden3 --model biden3 --dataset_mode unaligned3 --test_input AB

... ane other cases. change test_input to the case you want.

Test all cases:

python test2.py --dataroot ./datasets/image_decom --name biden3 --model biden3 --dataset_mode unaligned3

Task II: Real-scenario deraining:

Train:

python train.py --dataroot ./datasets/rain --name task2 --model rain --dataset_mode rain

Task III: Joint shadow/reflection/watermark removal:

Train:

python train.py --dataroot ./datasets/jointremoval_v1 --name task3_v1 --model jointremoval --dataset_mode jointremoval
or
python train.py --dataroot ./datasets/jointremoval_v2 --name task3_v2 --model jointremoval --dataset_mode jointremoval

The test results will be saved to an html file here: ./results/.

Apply a pre-trained BIDeN model

We provide our pre-trained BIDeN models at: https://drive.google.com/drive/folders/1UBmdKZXYewJVXHT4dRaat4g8xZ61OyDF?usp=sharing

Download the pre-tained model, unzip it and put it inside ./checkpoints.

Example usage: Download the dataset of task II (rain) and pretainred model of task II (task2). Test the rain streak case.

python test.py --dataroot ./datasets/rain --name task2 --model rain --dataset_mode rain --test_input B 

Evaluation

For FID score, use pytorch-fid.

For PSNR/SSIM/RMSE, see ./metrics/.

Raindrop effect

See ./raindrop/.

Citation

If you use our code or our results, please consider citing our paper. Thanks in advance!

@inproceedings{han2021bid,
  title={Blind Image Decomposition},
  author={Junlin Han and Weihao Li and Pengfei Fang and Chunyi Sun and Jie Hong and Mohammad Ali Armin and Lars Petersson and Hongdong Li},
  booktitle={arXiv preprint arXiv:2108.11364},
  year={2021}
}

Contact

[email protected] or [email protected]

Acknowledgments

Our code is developed based on DCLGAN and CUT. We thank the auhtors of MPRNet, perceptual-reflection-removal, Double-DIP, Deep-adversarial-decomposition for sharing their source code. We thank exposure-fusion-shadow-removal and ghost-free-shadow-removal for providing the source code and results. We thank pytorch-fid for FID computation.

Owner
Ugrad, ANU. Working on vision/graphics. Email: [email protected]
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Andy_Ge 62 Dec 21, 2022
PyTorch implementation of Higher Order Recurrent Space-Time Transformer

Higher Order Recurrent Space-Time Transformer (HORST) This is the official PyTorch implementation of Higher Order Recurrent Space-Time Transformer. Th

13 Oct 18, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

130 Dec 13, 2022
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
Wordle-solver - Wordle answer generation program in python

🟨 Wordle Solver 🟩 Wordle answer generation program in python ✔️ Requirements U

Dahyun Kang 4 May 28, 2022
This is a vision-based 3d model manipulation and control UI

Manipulation of 3D Models Using Hand Gesture This program allows user to manipulation 3D models (.obj format) with their hands. The project support bo

Cortic Technology Corp. 43 Oct 23, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Google Research 6 Jul 07, 2022
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
Image-to-image translation with conditional adversarial nets

pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat

Phillip Isola 9.3k Jan 08, 2023
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow

xRBM Library Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow Installation Using pip: pip install xrbm Examples Tut

Omid Alemi 55 Dec 29, 2022
Official codebase for Pretrained Transformers as Universal Computation Engines.

universal-computation Overview Official codebase for Pretrained Transformers as Universal Computation Engines. Contains demo notebook and scripts to r

Kevin Lu 210 Dec 28, 2022
On-device speech-to-index engine powered by deep learning.

On-device speech-to-index engine powered by deep learning.

Picovoice 30 Nov 24, 2022