Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

Overview

About

This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the same parameters as used in the paper.

We use torch 1.7.1 and torchvision 0.6.0. While the training and inference should be able to be done correctly with the newer versions of the libraries, be aware that at times the network trained and tested using versions might diverge or reach lower results. We provide a evironment.yaml file to create a corresponding conda environment.

We also support mixed-precision training via Nvidia Apex and describe how to use it in usage.

As in the paper we support training on 4 datasets: CUB-200-2011, CARS 196, Stanford Online Products and In-Shop datasets.

The majority of experiments are done using ResNet50. We provide support for the entire family of ResNet and DenseNet as well as BN-Inception.

Set up

  1. Clone and enter this repository:

     git clone https://github.com/dvl-tum/intra_batch.git
    
     cd intra_batch
    
  2. Create an Anaconda environment for this project: To set up a conda environment containing all used packages, please fist install anaconda and then run

    1.   conda env create -f environment.yml
      
    2.  conda activate intra_batch_dml
      
    3.  pip install torch-scatter==2.0.5 -f https://pytorch-geometric.com/whl/torch-1.5.0+cu102.html
      
    4. If you want to use Apex, please follow the installation instructions on https://github.com/NVIDIA/apex
  3. Download datasets: Make a data directory by typing

     mkdir data
    

    Then download the datasets using the following links and unzip them in the data directory:

    We also provide a parser for Stanford Online Products and In-Shop datastes. You can find dem in the dataset/ directory. The datasets are expected to be structured as dataset/images/class/, where dataset is either CUB-200-2011, CARS, Stanford_Online_Products or In_shop and class are the classes of a given dataset. Example for CUB-200-2011:

         CUB_200_2011/images/001
         CUB_200_2011/images/002
         CUB_200_2011/images/003
         ...
         CUB_200_2011/images/200
    
  4. Download our models: Please download the pretrained weights by using

     wget https://vision.in.tum.de/webshare/u/seidensc/intra_batch_connections/best_weights.zip
    

    and unzip them.

Usage

You can find config files for training and testing on each of the datasets in the config/ directory. For training and testing, you will have to input which one you want to use (see below). You will only be able to adapt some basic variables over the command line. For all others please refer to the yaml file directly.

Testing

To test to networks choose one of the config files for testing, e.g., config_cars_test.yaml to evaluate the performance on Cars196 and run:

python train.py --config_path config_cars_test.yaml --dataset_path <path to dataset> 

The default dataset path is data.

Training

To train a network choose one of the config files for training like config_cars_train.yaml to train on Cars196 and run:

python train.py --config_path config_cars_train.yaml --dataset_path <path to dataset> --net_type <net type you want to use>

Again, if you don't specify anything, the default setting will be used. For the net type you have the following options:

resnet18, resnet32, resnet50, resnet101, resnet152, densenet121, densenet161, densenet16, densenet201, bn_inception

If you want to use apex add --is_apex 1 to the command.

Results

[email protected] [email protected] [email protected] [email protected] NMI
CUB-200-2011 70.3 80.3 87.6 92.7 73.2
Cars196 88.1 93.3 96.2 98.2 74.8
[email protected] [email protected] [email protected] NMI
Stanford Online Products 81.4 91.3 95.9 92.6
[email protected] [email protected] [email protected] [email protected]
In-Shop 92.8 98.5 99.1 99.2

Citation

If you find this code useful, please consider citing the following paper:

@inproceedings{DBLP:conf/icml/SeidenschwarzEL21,
  author    = {Jenny Seidenschwarz and
               Ismail Elezi and
               Laura Leal{-}Taix{\'{e}}},
  title     = {Learning Intra-Batch Connections for Deep Metric Learning},
  booktitle = {Proceedings of the 38th International Conference on Machine Learning,
               {ICML} 2021, 18-24 July 2021, Virtual Event},
  series    = {Proceedings of Machine Learning Research},
  volume    = {139},
  pages     = {9410--9421},
  publisher = {{PMLR}},
  year      = {2021},
}
Owner
Dynamic Vision and Learning Group
Dynamic Vision and Learning Group
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
Tensorflow 2 implementation of our high quality frame interpolation neural network

FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in

Google Research 1.6k Dec 28, 2022
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa

DeepMind 44 Nov 20, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
Vit-ImageClassification - Pytorch ViT for Image classification on the CIFAR10 dataset

Vit-ImageClassification Introduction This project uses ViT to perform image clas

Kaicheng Yang 4 Jun 01, 2022
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023