Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Overview

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding

PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) paper.

Method Description

Distilled Sentence Embedding (DSE) distills knowledge from a finetuned state-of-the-art transformer model (BERT) to create high quality sentence embeddings. For a complete description, as well as implementation details and hyperparameters, please refer to the paper.

Usage

Follow the instructions below in order to run the training procedure of the Distilled Sentence Embedding (DSE) method. The python scripts below can be run with the -h parameter to get more information.

1. Install Requirements

Tested with Python 3.6+.

pip install -r requirements.txt

2. Download GLUE Datasets

Run the download_glue_data.py script to download the GLUE datasets.

python download_glue_data.py

3. Finetune BERT on a Specific Task

Finetune a standard BERT model on a specific task (e.g., MRPC, MNLI, etc.). Below is an example for the MRPC dataset.

python finetune_bert.py \
--bert_model bert-large-uncased-whole-word-masking \
--task_name mrpc \
--do_train \
--do_eval \
--do_lower_case \
--data_dir glue_data/MRPC \
--max_seq_length 128 \
--train_batch_size 32 \
--gradient_accumulation_steps 2 \
--learning_rate 2e-5 \
--num_train_epochs 3 \
--output_dir outputs/large_uncased_finetuned_mrpc \
--overwrite_output_dir \
--no_parallel

Note: For our code to work with the AllNLI dataset (a combination of the MNLI and SNLI datasets), you simply need to create a folder where the downloaded GLUE datasets are and copy the MNLI and SNLI datasets into it.

4. Create Logits for Distillation from the Finetuned BERT

Execute the following command to create the logits which will be used for the distillation training objective. Note that the bert_checkpoint_dir parameter has to match the output_dir from the previous command.

python run_distillation_logits_creator.py \
--task_name mrpc \
--data_dir glue_data/MRPC \
--do_lower_case \
--train_features_path glue_data/MRPC/train_bert-large-uncased-whole-word-masking_128_mrpc \
--bert_checkpoint_dir outputs/large_uncased_finetuned_mrpc

5. Train the DSE Model using the Finetuned BERT Logits

Train the DSE model using the extracted logits. Notice that the distillation_logits_path parameter needs to be changed according to the task.

python dse_train_runner.py \
--task_name mrpc \
--data_dir glue_data/MRPC \
--distillation_logits_path outputs/logits/large_uncased_finetuned_mrpc_logits.pt \
--do_lower_case \
--file_log \
--epochs 8 \
--store_checkpoints \
--fc_dims 512 1

Important Notes:

  • To store checkpoints for the model make sure that the --store_checkpoints flag is passed as shown above.
  • The fc_dims parameter accepts a list of space separated integers, and is the dimensions of the fully connected classifier that is put on top of the extracted features from the Siamese DSE model. The output dimension (in this case 1) needs to be changed according to the wanted output dimensionality. For example, for the MNLI dataset the fc_dims parameter should be 512 3 since it is a 3 class classification task.

6. Loading the Trained DSE Model

During training, checkpoints of the Trainer object which contains the model will be saved. You can load these checkpoints and extract the model state dictionary from them. Then you can load the state into a created DSESiameseClassifier model. The load_dse_checkpoint_example.py script contains an example of how to do that.

To load the model trained with the example commands above you can use:

python load_dse_checkpoint_example.py \
--task_name mrpc \
--trainer_checkpoint <path_to_saved_checkpoint> \
--do_lower_case \
--fc_dims 512 1

Acknowledgments

Citation

If you find this code useful, please cite the following paper:

@inproceedings{barkan2020scalable,
  title={Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding},
  author={Barkan, Oren and Razin, Noam and Malkiel, Itzik and Katz, Ori and Caciularu, Avi and Koenigstein, Noam},
  booktitle={AAAI Conference on Artificial Intelligence (AAAI)},
  year={2020}
}
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
Representing Long-Range Context for Graph Neural Networks with Global Attention

Graph Augmentation Graph augmentation/self-supervision/etc. Algorithms gcn gcn+virtual node gin gin+virtual node PNA GraphTrans Augmentation methods N

UC Berkeley RISE 67 Dec 30, 2022
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation

DFFNet Paper DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation. Xiangyan Tang, Wenxuan Tu, Keqiu Li, J

4 Sep 23, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Yuki M. Asano 249 Dec 22, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022