Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Overview

Torch Time Stretch

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

View on PyPI / View Documentation

Publish to PyPI Run tests PyPI version Number of downloads from PyPI per month Python version support Code Style: Black

About

This package includes two main features:

  • Time-stretch audio clips quickly using PyTorch (with CUDA support)
  • Calculate efficient time-stretch targets (useful for augmentation, where speed is more important than precise time-stretches)

Also check out torch-pitch-shift, a sister project for pitch-shifting.

Installation

pip install torch-time-stretch

Usage

Example

Check out example.py to see torch-time-stretch in action!

Documentation

See the documentation page for detailed documentation!

Contributing

Please feel free to submit issues or pull requests!

You might also like...
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Several simple examples for popular neural network toolkits calling custom CUDA operators.
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We have upgraded the point cloud modules of SPH3D-GCN from homogeneous to heterogeneous representations, and included the upgraded modules into this latest work as well. We are happy to announce that the work is accepted to IEEE CVPR2021.

Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Comments
  • RuntimeError: The size of tensor a (40264) must match the size of tensor b (173) at non-singleton dimension 1

    RuntimeError: The size of tensor a (40264) must match the size of tensor b (173) at non-singleton dimension 1

    I use same code in https://github.com/KentoNishi/torch-time-stretch/blob/master/example.py but get below error

    (librosa) ➜  torch-time-stretch git:(master) ✗ python example.py 
    Traceback (most recent call last):
      File "/home/jackie/code/github/torch-time-stretch/example.py", line 48, in <module>
        test_time_stretch_2_up()
      File "/home/jackie/code/github/torch-time-stretch/example.py", line 20, in test_time_stretch_2_up
        up = time_stretch(sample, Fraction(1, 2), SAMPLE_RATE)
      File "/home/jackie/code/github/torch-time-stretch/torch_time_stretch/main.py", line 116, in time_stretch
        output = stretcher(output)
      File "/home/jackie/anaconda3/envs/librosa/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/jackie/anaconda3/envs/librosa/lib/python3.9/site-packages/torchaudio/transforms/_transforms.py", line 1059, in forward
        return F.phase_vocoder(complex_specgrams, rate, self.phase_advance)
      File "/home/jackie/anaconda3/envs/librosa/lib/python3.9/site-packages/torchaudio/functional/functional.py", line 743, in phase_vocoder
        phase = angle_1 - angle_0 - phase_advance
    RuntimeError: The size of tensor a (40264) must match the size of tensor b (173) at non-singleton dimension 1
    
    opened by Jackiexiao 4
  • Example ratios are reversed.

    Example ratios are reversed.

    Love it, thanks for making this! Tiny thing: In the example test_time_stretch_2_up should use 1/2 as a ratio, not 2/1. test_time_stretch_2_down should use that 2/1 (it's stretching the clip length by 2x).

    opened by hdemmer 1
  • Does it with mono-channel wav files?

    Does it with mono-channel wav files?

    my audio clip is in mono 16khz audio, [ 0 0 0 ... 63 100 127], so it will throw

    ---> 15 down = time_stretch(sample, Fraction(2, 1), SAMPLE_RATE)
         16 wavfile.write(
         17     "./stretched_down_2.wav",
         18     SAMPLE_RATE,
         19     np.swapaxes(down.cpu()[0].numpy(), 0, 0).astype(dtype),
         20 )
    
    File /opt/conda/envs/classify-audio/lib/python3.9/site-packages/torch_time_stretch/main.py:108, in time_stretch(input, stretch, sample_rate, n_fft, hop_length)
        106 if not hop_length:
        107     hop_length = n_fft // 32
    --> 108 batch_size, channels, samples = input.shape
        109 # resampler = T.Resample(sample_rate, int(sample_rate / stretch)).to(input.device)
        110 output = input
    
    ValueError: not enough values to unpack (expected 3, got 2)
    
    opened by ti3x 0
Releases(v1.0.3)
Owner
Kento Nishi
17-year-old programmer at Lynbrook High School, with strong interests in AI/Machine Learning. Open source developer and researcher at the Four Eyes Lab.
Kento Nishi
paper: Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network

DC-CapsNet This is a tensorflow and keras based implementation of DC-CapsNet for HSI in the Remote Sensing Letters R. Lei et al., "Hyperspectral Remot

LEI 7 Nov 29, 2022
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
Keras Realtime Multi-Person Pose Estimation - Keras version of Realtime Multi-Person Pose Estimation project

This repository has become incompatible with the latest and recommended version of Tensorflow 2.0 Instead of refactoring this code painfully, I create

M Faber 769 Dec 08, 2022
Automatic Attendance marker for LMS Practice School Division, BITS Pilani

LMS Attendance Marker Automatic script for lazy people to mark attendance on LMS for Practice School 1. Setup Add your LMS credentials and time slot t

Nihar Bansal 3 Jun 12, 2021
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
This repository contains an implementation of the Permutohedral Attention Module in Pytorch

Permutohedral_attention_module This repository contains an implementation of the Permutohedral Attention Module

Samuel JOUTARD 26 Nov 27, 2022
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
CS550 Machine Learning course project on CNN Detection.

CNN Detection (CS550 Machine Learning Project) Team Members (Tensor) : Yadava Kishore Chodipilli (11940310) Thashmitha BS (11941250) This is a work do

yaadava_kishore 2 Jan 30, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
Quantify the difference between two arbitrary curves in space

similaritymeasures Quantify the difference between two arbitrary curves Curves in this case are: discretized by inidviudal data points ordered from a

Charles Jekel 175 Jan 08, 2023
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
Implementation of average- and worst-case robust flatness measures for adversarial training.

Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S

David Stutz 13 Nov 27, 2022
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
PyMatting: A Python Library for Alpha Matting

Given an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).

PyMatting 1.4k Dec 30, 2022
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors

Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository contains

151 Dec 26, 2022
End-To-End Optimization of LiDAR Beam Configuration

End-To-End Optimization of LiDAR Beam Configuration arXiv | IEEE Xplore This repository is the official implementation of the paper: End-To-End Optimi

Niclas 30 Nov 28, 2022