Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Overview

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Install

Clone the repository and run:

$ pip install .

Usage

This code implements the adaECOLog algorithms (OFU and TS variants) - both from the aforedmentioned paper, along with several baselines (oldest to newest):

Experiments can be ran for several Logistic Bandit (i.e structured Bernoulli feedback) environments, such as static and time-varying finite arm-sets, or inifinite arm-sets (e.g. unit ball).

regret_fig

Single Experiment

Single experiments (one algorithm for one environment) can be ran thanks to scripts/run_example.py. The script instantiate the algorithm and environment indicated in the file scripts/configs/example_config.py and plots the regret.

Benchmark

Benchmarks can be obtained thanks to scripts/run_all.py. This script runs experiments for any config file in scripts/configs/generated_configs/ and stores the result in scripts/logs/.

Plot results

You can use scripts/plot_regret.py to plot regret curves. This scripts plot regret curves for all logs in scripts/logs/ that match the indicated dimension and parameter norm.

usage: plot_regret.py [-h] [-d [D]] [-pn [PN]]

Plot regret curves (by default for dimension=2 and parameter norm=3)

optional arguments:
  -h, --help  show this help message and exit
  -d [D]      Dimension (default: 2)
  -pn [PN]    Parameter norm (default: 4.0)

Generating configs

You can automatically generate config files thanks to scripts/generate_configs.py.

usage: generate_configs.py [-h] [-dims DIMS [DIMS ...]] [-pn PN [PN ...]] [-algos ALGOS [ALGOS ...]] [-r [R]] [-hz [HZ]] [-ast [AST]] [-ass [ASS]] [-fl [FL]]

Automatically creates configs, stored in configs/generated_configs/

optional arguments:
  -h, --help            show this help message and exit
  -dims DIMS [DIMS ...]
                        Dimension (default: None)
  -pn PN [PN ...]       Parameter norm (||theta_star||) (default: None)
  -algos ALGOS [ALGOS ...]
                        Algorithms. Possibilities include GLM-UCB, LogUCB1, OFULog-r, OL2M, GLOC or adaECOLog (default: None)
  -r [R]                # of independent runs (default: 20)
  -hz [HZ]              Horizon, normalized (later multiplied by sqrt(dim)) (default: 1000)
  -ast [AST]            Arm set type. Must be either fixed_discrete, tv_discrete or ball (default: fixed_discrete)
  -ass [ASS]            Arm set size, normalized (later multiplied by dim) (default: 10)
  -fl [FL]              Failure level, must be in (0,1) (default: 0.05)

For instance running python generate_configs.py -dims 2 -pn 3 4 5 -algos GLM-UCB GLOC OL2M adaECOLog generates configs in dimension 2 for GLM-UCB, GLOC, OL2M and adaECOLog, for environments (set as defaults) of ground-truth norm 3, 4 and 5.

Owner
Faury Louis
Machine Learning researcher. Interest in bandit algorithms and reinforcement learning. PhD in Machine Learning, obtained in 2021.
Faury Louis
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
A novel pipeline framework for multi-hop complex KGQA task. About the paper title: Improving Multi-hop Embedded Knowledge Graph Question Answering by Introducing Relational Chain Reasoning

Rce-KGQA A novel pipeline framework for multi-hop complex KGQA task. This framework mainly contains two modules, answering_filtering_module and relati

金伟强 -上海大学人工智能小渣渣~ 16 Nov 18, 2022
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022
An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.

Bottom-Up and Top-Down Attention for Visual Question Answering An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge. The

Hengyuan Hu 731 Jan 03, 2023
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
some classic model used to segment the medical images like CT、X-ray and so on

github_project This is a project for medical image segmentation. This project includes common medical image segmentation models such as U-net, FCN, De

2 Mar 30, 2022
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022