Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Overview

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Install

Clone the repository and run:

$ pip install .

Usage

This code implements the adaECOLog algorithms (OFU and TS variants) - both from the aforedmentioned paper, along with several baselines (oldest to newest):

Experiments can be ran for several Logistic Bandit (i.e structured Bernoulli feedback) environments, such as static and time-varying finite arm-sets, or inifinite arm-sets (e.g. unit ball).

regret_fig

Single Experiment

Single experiments (one algorithm for one environment) can be ran thanks to scripts/run_example.py. The script instantiate the algorithm and environment indicated in the file scripts/configs/example_config.py and plots the regret.

Benchmark

Benchmarks can be obtained thanks to scripts/run_all.py. This script runs experiments for any config file in scripts/configs/generated_configs/ and stores the result in scripts/logs/.

Plot results

You can use scripts/plot_regret.py to plot regret curves. This scripts plot regret curves for all logs in scripts/logs/ that match the indicated dimension and parameter norm.

usage: plot_regret.py [-h] [-d [D]] [-pn [PN]]

Plot regret curves (by default for dimension=2 and parameter norm=3)

optional arguments:
  -h, --help  show this help message and exit
  -d [D]      Dimension (default: 2)
  -pn [PN]    Parameter norm (default: 4.0)

Generating configs

You can automatically generate config files thanks to scripts/generate_configs.py.

usage: generate_configs.py [-h] [-dims DIMS [DIMS ...]] [-pn PN [PN ...]] [-algos ALGOS [ALGOS ...]] [-r [R]] [-hz [HZ]] [-ast [AST]] [-ass [ASS]] [-fl [FL]]

Automatically creates configs, stored in configs/generated_configs/

optional arguments:
  -h, --help            show this help message and exit
  -dims DIMS [DIMS ...]
                        Dimension (default: None)
  -pn PN [PN ...]       Parameter norm (||theta_star||) (default: None)
  -algos ALGOS [ALGOS ...]
                        Algorithms. Possibilities include GLM-UCB, LogUCB1, OFULog-r, OL2M, GLOC or adaECOLog (default: None)
  -r [R]                # of independent runs (default: 20)
  -hz [HZ]              Horizon, normalized (later multiplied by sqrt(dim)) (default: 1000)
  -ast [AST]            Arm set type. Must be either fixed_discrete, tv_discrete or ball (default: fixed_discrete)
  -ass [ASS]            Arm set size, normalized (later multiplied by dim) (default: 10)
  -fl [FL]              Failure level, must be in (0,1) (default: 0.05)

For instance running python generate_configs.py -dims 2 -pn 3 4 5 -algos GLM-UCB GLOC OL2M adaECOLog generates configs in dimension 2 for GLM-UCB, GLOC, OL2M and adaECOLog, for environments (set as defaults) of ground-truth norm 3, 4 and 5.

Owner
Faury Louis
Machine Learning researcher. Interest in bandit algorithms and reinforcement learning. PhD in Machine Learning, obtained in 2021.
Faury Louis
Official implementation of "Refiner: Refining Self-attention for Vision Transformers".

RefinerViT This repo is the official implementation of "Refiner: Refining Self-attention for Vision Transformers". The repo is build on top of timm an

101 Dec 29, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral) Tianyu Wang*, Xiaowei Hu*, Chi-Wing Fu, and Pheng-Ann Hen

Steve Wong 51 Oct 20, 2022
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
School of Artificial Intelligence at the Nanjing University (NJU)School of Artificial Intelligence at the Nanjing University (NJU)

F-Principle This is an exercise problem of the digital signal processing (DSP) course at School of Artificial Intelligence at the Nanjing University (

Thyrix 5 Nov 23, 2022
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 03, 2023
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)

GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

859 Dec 26, 2022
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
👨‍💻 run nanosaur in simulation with Gazebo/Ingnition

🦕 👨‍💻 nanosaur_gazebo nanosaur The smallest NVIDIA Jetson dinosaur robot, open-source, fully 3D printable, based on ROS2 & Isaac ROS. Designed & ma

nanosaur 9 Jul 19, 2022
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023